Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T17:48:22.689Z Has data issue: false hasContentIssue false

Inventory of organisms interfering with transmission of a marine trematode

Published online by Cambridge University Press:  11 March 2014

Jennifer E. Welsh*
Affiliation:
Department of Marine Ecology, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, The Netherlands
Jaap van der Meer
Affiliation:
Department of Marine Ecology, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, The Netherlands
Corina P.D. Brussaard
Affiliation:
Department of Biological Oceanography, NIOZ—Royal Netherland Institute for Sea Research, PO Box 59, NL-1790 AB Den Burg, The Netherlands Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands
David W. Thieltges
Affiliation:
Department of Marine Ecology, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, The Netherlands
*
Correspondence should be addressed to: J.E. Welsh, Department of Marine Ecology, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, The Netherlands email: [email protected]

Abstract

It has increasingly been recognized that organisms can interfere with parasitic free-living stages, preventing them from infecting their specified host and thus reducing infection levels. This common phenomenon in freshwater and terrestrial systems has been termed the ‘dilution effect’ and, so far, is poorly studied in marine systems. Ten common intertidal organisms found in the Dutch Wadden Sea (North Sea) were tested to establish their effects on the free-living cercarial stages of the trematode parasite Himasthla elongata. Most species tested resulted in a significant reduction in cercariae over a 3 hr time period. The amphipod Gammarus marinus removed 100% of the cercariae, while other effective diluters were Crangon crangon (93%), Sargassum muticum (87%), Semibalanus balanoides (71%), Crassostrea gigas (67%), Hemigrapsus takanoi (>54%), Crassostrea gigas shells (44%) and Idotea balthica (24%). In contrast, mixed shells (Cerastoderma edule, Mytilus edulis, Ensis americanus and Littorina littorea) and Fucus versiculosus had no significant effect. These results suggest that dilution effects are widespread in the trematode of H. elongata, with potentially strong effects on its population dynamics.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bartoli, P. and Boudouresque, C. (1997) Transmission failure of parasites (Digenea) in sites colonized by the recently introduced invasive alga Caulerpa taxifolia. Marine Ecology Progress Series 154, 253260.CrossRefGoogle Scholar
Bates, A.E., Leiterer, F., Wiedeback, M.L. and Poulin, R. (2011) Parasitized snails take the heat: a case of host manipulation? Oecologia 167, 613621.CrossRefGoogle Scholar
Buschbaum, C., Chapman, A.S. and Saier, B. (2006) How an introduced seaweed can affect epibiota diversity in different coastal systems. Marine Biology 148, 743754.CrossRefGoogle Scholar
Desclaux, C., de Montaudouin, X. and Bachelet, G. (2004) Cockle Cerastoderma edule population mortality: role of the digenean parasite Himasthla quissetensis. Marine Ecology Progress Series 279, 141150.CrossRefGoogle Scholar
Dunne, J.A., Lafferty, K.D., Dobson, A.P., Hechinger, R.F., Kuris, A.M., Martinez, N.D., McLaughlin, J.P., Mouritsen, K.N., Poulin, R., Reise, R., Stouffer, D.B., Thieltges, D.W., Williams, R.J. and Zander, C.D. (2013) Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biology 11, e1001579. doi:10.1371/journal.pbio.1001579.CrossRefGoogle ScholarPubMed
Edelaar, P., Drent, J. and de Goeij, P. (2003) A double test of the parasite manipulation hypothesis in a burrowing bivalve. Oecologia 134, 6671.CrossRefGoogle Scholar
Fredensborg, B., Mouritsen, K. and Poulin, R. (2005) Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarinatus. Marine Ecology Progress Series 290, 109117.CrossRefGoogle Scholar
Galaktionov, K.V. and Dobrovolskij, A.A. (2003) The biology and evolution of trematodes: an essay on the biology, morphology, life cycles, transmission, and evolution of digenetic trematodes. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
van der Graaf, S., de Vlas, J., Herlyn, M., Voss, J., Karin, H. and Drent, J. (2009) Macrozoobenthos. Thematic Report No. 10. Wadden Sea Ecosystem No. 25. In Marencic, H. and Vlas, J. de (eds) Quality Status Report 2009. Wadden Sea Ecosystem No. 25. Wilhelmshav: Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group.Google Scholar
Harvell, D., Aronson, R., Baron, N., Connell, J., Dobson, A., Ellner, S., Gerber, L., Kim, K., Kuris, A., McCullum, H., Lafferty, K., McKay, B., Porter, J., Pascual, M., Smith, G., Sutherland, K. and Ward, J. (2004) The rising tide of ocean diseases: unsolved problems and research priorities. Frontiers in Ecology and the Environment 2, 375382.CrossRefGoogle Scholar
Hopper, J.V., Poulin, R. and Thieltges, D.W. (2008) Buffering role of the intertidal anemone Anthopleura aureoradiata in cercarial transmission from snails to crabs. Journal of Experimental Marine Biology and Ecology 367, 153156.CrossRefGoogle Scholar
Jensen, K.T. and Mouritsen, K.N. (1992) Mass mortality in two common soft-bottom invertebrates, Hydrobia ulvae and Corophium volutator-the possible role of trematodes. Helgoländer Meeresuntersuchungen 46, 329339.CrossRefGoogle Scholar
Jensen, T., Jensen, K.T. and Mouritsen, K.N. (1998) The influence of the trematode Microphallus claviformis on two congeneric intermediate host species (Corophium): infection characteristics and host survival. Journal of Experimental Marine Biology and Ecology 227, 3548.CrossRefGoogle Scholar
Johnson, P.T.J., Dobson, A., Lafferty, K.D., Marcogliese, D.J., Memmott, J., Orlofske, S.A., Poulin, R., and Thieltges, D.W. (2010) When parasites become prey: ecological and epidemiological significance of eating parasites. Trends in Ecology and Evolution 25, 362371.CrossRefGoogle ScholarPubMed
Johnson, P.T.J. and Thieltges, D.W. (2010) Diversity, decoys and the dilution effect: how ecological communities affect disease risk. Journal of Experimental Biology 213, 961970.CrossRefGoogle ScholarPubMed
Kaplan, A.T., Rebhal, S., Lafferty, K.D. and Kuris, A.M. (2009) Small estuarine fishes feed on large trematode cercariae: lab and field investigations. Journal of Parasitology 95, 477480.CrossRefGoogle ScholarPubMed
Keesing, F., Belden, L.K., Daszak, P., Dobson, A., Harvell, C.D., Holt, R.D., Hudso, P., Jolles, A., Jones, K.E., Mitchell, C.E., Myers, S.S., Bogich, T., and Ostfeld, R.S. (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647652.CrossRefGoogle ScholarPubMed
Keesing, F., Holt, R.D. and Ostfeld, R.S. (2006) Effects of species diversity on disease risk. Ecology Letters 9, 485498.CrossRefGoogle ScholarPubMed
Kelly, D.W., Paterson, R.A., Townsend, C.R., Poulin, R. and Tompkins, D. (2009) Parasite spillback: a neglected concept in invasion ecology? Ecology 90, 20472056.CrossRefGoogle ScholarPubMed
Kopp, K. and Jokela, J. (2007) Resistant invaders can convey benefits to native species. Oikos 116, 295301.CrossRefGoogle Scholar
Kuris, A.M., Hechinger, R.F., Shaw, J.C., Whitney, K.L., Aguirre-Macedo, L., Boch, C.A., Dobson, A.P., Dunham, E.J., Fredensborg, B.L., Huspeni, T.C., Lorda, J., Mababal, L., Mancini, F.T., Mora, A.B., Pickering, M., Talhouk, N.L., Torchin, M.E. and Lafferty, K.D. (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515518.CrossRefGoogle ScholarPubMed
Lafferty, K. (1993) Effects of parasitic castration on growth reproduction and population dynamics of the marine snail Cerithidea californica. Marine Ecology Progress Series 96, 229237.CrossRefGoogle Scholar
Lafferty, K.D., Allesina, S., Arim, M., Briggs, C.J., De Leo, G., Dobson, A.P., Dunne, J.A., Johnson, P.T., Kuris, A.M., Marcogliese, D.J., Martinez, N.D., Memmott, J., Marquet, P.A., McLaughlin, J.P., Mordecai, E.A., Pascual, M., Poulin, R. and Thieltges, D.W. (2008) Parasites in food webs: the ultimate missing links. Ecoogy Letters 11, 533546.CrossRefGoogle ScholarPubMed
Mouritsen, K.N. and Jensen, K.T. (1997) Parasite transmission between soft-bottom invertebrates: temperature mediated infection rates and mortality in Corophium volutator. Marine Ecology Progress Series 151, 123134.CrossRefGoogle Scholar
Mouritsen, K.N. and Poulin, R. (2002) Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124, S101S117.CrossRefGoogle ScholarPubMed
Mouritsen, K.N. and Poulin, R. (2003) The mud flat anemone–cockle association: mutualism in the intertidal zone? Oecologia 135, 131137.CrossRefGoogle ScholarPubMed
Pietrock, M. and Marcogliese, D.J. (2003) Free-living endohelminth stages: at the mercy of environmental conditions. Trends in Parasitology 19, 293299.CrossRefGoogle ScholarPubMed
Prinz, K., Kelly, T.C., O'Riordan, R.M. and Culloty, S.C. (2009) Non-host organisms affect transmission processes in two common trematode parasites of rocky shores. Marine Biology 156, 23032311.CrossRefGoogle Scholar
Studer, A., Kremer, L., Nelles, J., Poulin, R. and Thieltges, D.W. (2013) Biotic interference in parasite transmission: can the feeding of anemones counteract an increased risk of parasitism in amphipods at higher temperature? Journal of Experimental Marine Biology and Ecology 445, 116119.CrossRefGoogle Scholar
Studer, A. and Poulin, R. (2013) Cercarial survival in an intertidal trematode: a multifactorial experiment with temperature, salinity and ultraviolet radiation. Parasitological Research 112, 243249.CrossRefGoogle Scholar
Sweenen, C. (1969) Crawling-tracks of trematode infected Macoma baltica (L.) Netherlands Journal of Sea Research 4, 376379.CrossRefGoogle Scholar
Thieltges, D. (2006) Effect of infection by the metacercarial trematodes Renicola roscovita on growth in intertidal blue mussel Mytilus edulis. Marine Ecology Progress Series 319, 129134.CrossRefGoogle Scholar
Thieltges, D.W., Bordalo, M.D., Hernández, A.C., Prinz, K. and Jensen, K.T. (2008a) Ambient fauna impairs parasite transmission in a marine parasite-host system. Parasitology 135, 11111116.CrossRefGoogle Scholar
Thieltges, D.W., Engelsma, M.Y., Wendling, C.C. and Wegner, K.M. (2012) Parasites in the Wadden Sea food web. Journal of Sea Research 82, 122133.CrossRefGoogle Scholar
Thieltges, D.W., Jensen, K.T. and Poulin, R. (2008b) The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135, 407–26.CrossRefGoogle ScholarPubMed
Thieltges, D.W., Reise, K., Prinz, K. and Jensen, K.T. (2009) Invaders interfere with native parasite–host interactions. Biological Invasions 11, 14211429.CrossRefGoogle Scholar
Thieltges, D.W. and Rick, J. (2006) Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae) Diseases of Aquatic Organisms 73, 6368.Google ScholarPubMed
Thieltges, D.W., Strasser, M. and Reise, K. (2006) How bad are invaders in coastal waters? The case of the American slipper limpet Crepidula fornicata in western Europe. Biological Invasions 8, 16731680.CrossRefGoogle Scholar
Thomas, F., Adamo, S. and Moore, J. (2005) Parasitic manipulation: where are we and where should we go? Behavioural Processes 68, 185199.CrossRefGoogle ScholarPubMed
Werding, B. (1969) Morphologie, Entwicklung und Ökologie digener Trematoden-Larven der Strandschnecke Littorina littorea. Marine Biology 3, 306333.CrossRefGoogle Scholar