Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T14:24:21.847Z Has data issue: false hasContentIssue false

Hydrocoryne iemanja (Cnidaria), a new species of Hydrozoa with unusual mode of asexual reproduction

Published online by Cambridge University Press:  20 February 2009

André C. Morandini*
Affiliation:
Grupo de Sistemática e Biologia Evolutiva (GSE), Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, C.P. 119331, Macaé, RJ, 27910-970, Brazil
Sérgio N. Stampar
Affiliation:
Departamento de Zoologia, Instituto de Biociências (IB-USP), Universidade de São Paulo, R. Matão, trav. 14, 101, São Paulo, SP, 05508-900, Brazil
Alvaro E. Migotto
Affiliation:
Centro de Biologia Marinha (CEBIMar-USP), Universidade de São Paulo, Avenida Manoel H. do Rego km 131,5, São Sebastião, SP, 11600-000, Brazil
Antonio C. Marques
Affiliation:
Departamento de Zoologia, Instituto de Biociências (IB-USP), Universidade de São Paulo, R. Matão, trav. 14, 101, São Paulo, SP, 05508-900, Brazil
*
Correspondence should be addressed to: André C. Morandini, Departamento de Zoologia, Instituto de Biociênciàs (IB-USP), Universidade de São Paulo, Rua do Matão, trav. 14, n. 101, São Paulo, SP, 05508-900, Brazil email: [email protected]

Abstract

Hydrocoryne iemanja sp. nov. was found in an aquarium, growing on rhodoliths of coralline algae collected on the south-eastern coast of Brazil (20°40′S 40°2′W). The colonies were reared through maturity in the laboratory. Each colony had up to 7 sessile, long and thin monomorphic zooids, very extensible and flexible, arising from a chitinous, hard dark-brown plate with minute spines. Medusae budded from near the basal part of hydrocaulus, and were released in immature condition, acquiring fully developed interradial gonads 5–7 days after release. Asexual reproduction by longitudinal fission was observed on the hydrocaulus of the polyps, both for those in normal condition and those with injuries. Fission started at the oral region, extending aborally, with a new hard plate formed in the basal part of hydrocaulus. When fission reached the new hard plate, the new polyp detached, becoming free and sinking to the bottom, starting a new colony. Detached polyps were morphologically indistinguishable from other polyps, being able to produce medusae. Mother and daughter polyps undertook subsequent fissions. This mode of longitudinal fission is distinct from other modes of longitudinal fission, a process known for a few species of cnidarians. Further studies of this process may shed light on the understanding of the evolutionary pathways in Cnidaria and animals. Hydrocoryne iemanja sp. nov. is distinguishable from its two congeners by the distinct marginal tentacles of the medusae—short and with a median nematocyst knob—an unambiguous character useful even for the identification of newly liberated medusae.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bavestrello, G., Puce, S., Cerrano, C. and Castellano, L. (2000a) Water movement activating fragmentation: a new dispersal strategy for hydractiniid hydroids. Journal of the Marine Biological Association of the United Kingdom 80, 361362.CrossRefGoogle Scholar
Bavestrello, G., Puce, S., Cerrano, C. and Senes, L. (2000b) Strobilation in a species of Bougainvillioidea (Cnidaria, Hydrozoa). Scientia Marina 64, 147150.CrossRefGoogle Scholar
Boero, F., Bouillon, J., Piraino, S. and Schmid, V. (2002) Asexual reproduction in the Hydrozoa (Cnidaria). In Hughes, R.N. (ed.) Reproductive biology of invertebrates. Volume XI. Progress in asexual reproduction. New Delhi: Oxford & IBH Publishing Co., pp. 141158.Google Scholar
Bouillon, J. (1985) Essai de classification des hydropolypes–hydroméduses (Hydrozoa–Cnidaria). Indo-Malayan Zoology 1, 29243.Google Scholar
Bouillon, J. (1994) Classe des Hydrozoaires. In Doumenc, D. (ed.) Traité de zoologie, tome III, Cnidaires–Cténaires, fascicule 2. Masson: Paris, pp. 29416.Google Scholar
Bouillon, J. and Boero, F. (2000) Synopsis of the families and genera of the Hydromedusae of the world, with a list of the worldwide species. Thalassia Salentina 24, 47296.Google Scholar
Bouillon, J., Medel, M.D., Pagès, F., Gili, J.M., Boero, F. and Gravili, C. (2004) Fauna of the Mediterranean Hydrozoa. Scientia Marina 68, 1449.CrossRefGoogle Scholar
Brinckmann-Voss, A. (1967) The hydroid of Vannuccia forbesi (Anthomedusae, Tubulariidae). Breviora 263, 110.Google Scholar
Cairns, S.D. (1988) Asexual reproduction in solitary Scleractinia. Proceedings of the 6th International Coral Reef Symposium 2, 641646.Google Scholar
Calder, D.R. and Kirkendale, L. (2005) Hydroids (Cnidaria, Hydrozoa) from shallow-water environments along the Caribbean coast of Panama. Caribbean Journal of Science 41, 476491.Google Scholar
Collins, A.G., Schuchert, P., Marques, A.C., Jankowski, T., Medina, M. and Schierwater, B. (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Systematic Biology 55, 97115.CrossRefGoogle Scholar
Collins, A.G., Winkelmann, S., Hadrys, H. and Schierwater, B. (2005) Phylogeny of Capitata and Corynidae (Cnidaria, Hydrozoa) in light of mitochondrial 16S rDNA data. Zoologica Scripta 34, 9199.CrossRefGoogle Scholar
Daly, M., Fautin, D.G. and Cappola, V.A. (2003) Systematics of the Hexacorallia (Cnidaria: Anthozoa). Zoological Journal of the Linnean Society 139, 419437.CrossRefGoogle Scholar
Fautin, D.G. (2002) Reproduction of Cnidaria. Canadian Journal of Zoology 80, 17351754.CrossRefGoogle Scholar
Galliot, B. and Schmid, V. (2002) Cnidarians as a model system for understanding evolution and regeneration. International Journal of Developmental Biology 46, 3948.Google Scholar
Geller, J.B., Fitzgerald, L.J. and King, C.E. (2005) Fission in sea anemones: integrative studies of life cycle evolution. Integrative and Comparative Biology 45, 615622.CrossRefGoogle ScholarPubMed
Gravier-Bonnet, N. (1992) Cloning and dispersal by buoyant autotomised hydranths of a thecate hydroid (Cnidaria; Hydrozoa). Scientia Marina 56, 229236.Google Scholar
Grohmann, P.A., Nogueira, C.C. and da Silva, V.M.A.P. (2003) Hydroids (Cnidaria, Hydrozoa) collected on the continental shelf of Brazil during the Geomar X Oceanographic Operation. Zootaxa 299, 119.CrossRefGoogle Scholar
Hirano, Y.M., Hirano, Y.J. and Yamada, M. (2000) Life in tidepools: distribution and abundance of two crawling hydromedusae, Staurocladia oahuensis and S. bilateralis, on a rocky intertidal shore in Kominato, central Japan. Scientia Marina 64(Suppl.1), 179187.CrossRefGoogle Scholar
Hirohito, Emperor of Japan (1988) The hydroids of Sagami Bay. Collected by his majesty the Emperor of Japan. Tokyo: Imperial Household.Google Scholar
Hyman, L.H. (1928) Miscellaneous observations on Hydra, with special reference to reproduction. Biological Bulletin. Marine Biological Laboratory, Woods Hole 54, 65109.CrossRefGoogle Scholar
Jarms, G., Morandini, A.C. and da Silveira, F.L. (2002) Cultivation of polyps and medusae of Coronatae (Cnidaria, Scyphozoa) with a brief review of important characters. Helgoland Marine Research 56, 203210.CrossRefGoogle Scholar
Kramp, P.L. (1961) Synopsis of the medusae of the world. Journal of the Marine Biological Association of the United Kingdom 40, 7469.CrossRefGoogle Scholar
Kubota, S. (1988) Taxonomic study on Hydrocoryne miurensis ( Hydrozoa: Hydrocorynidae) in Japan. Publications of the Seto Marine Biological Laboratories 33, 118.CrossRefGoogle Scholar
Leloup, E. (1952) Coelentérés. In Faune de Belgique. Bruxelles: Institut Royal des Sciences Naturelles de Belgique.Google Scholar
Mangin, K.L. (1991) Samuraia tabularasa gen. nov., sp. nov. (Cnidaria, Hydrozoa, Hydrocorynidae), an intertidal hydroid from the Gulf of California, Mexico. Hydrobiologia 216/217, 443451.CrossRefGoogle Scholar
Mariscal, R.N. (1974) Nematocysts. In Muscatine, L. and Lenhoff, H.M. (eds) Coelenterate biology, reviews and new perspectives. New York: Academic Press, pp. 129178.CrossRefGoogle Scholar
Margulis, R.Y. and Karlsen, A.G. (1980) A hydroid polyp Hydrocoryne, new for the fauna of the Sea of Japan. Zoological Zhurnal 59, 12481250.Google Scholar
Marques, A.C., Morandini, A.C. and Migotto, A.E. (2003) Synopsis of knowledge on Cnidaria Medusozoa from Brazil. Biota Neotropica 3, 118.CrossRefGoogle Scholar
Marques, A.C. and Lamas, C.J.E. (2006) Taxonomia zoológica no Brasil: estado da arte, expectativas e sugestões de ações futuras. Papéis Avulsos de Zoologia 46, 139172.Google Scholar
Migotto, A.E. (1996) Benthic shallow-water hydroids (Cnidaria, Hydrozoa) of the coast of São Sebastião, Brazil, including a checklist of brazilian hydroids. Zoologische Verhandenlingen 306, 1125.Google Scholar
Migotto, A.E., Marques, A.C., Morandini, A.C. and da Silveira, F.L. (2002) Checklist of the Cnidaria Medusozoa of Brazil. Biota Neotropica 2, 131.CrossRefGoogle Scholar
Migotto, A.E. and Marques, A.C. (2006) Invertebrados marinhos. In Lewinshon, T.M. (ed.) Avaliação do estado do conhecimento da diversidade brasileira, 1. Brasília: Ministério do Meio Ambiente, pp. 147202.Google Scholar
Parke, H.H. (1900) Variation and regulation of abnormalities in Hydra. Archiv für Entwicklungen der Organismen 10, 692710.CrossRefGoogle Scholar
Pérez, C. (1920) Processus de multiplication par bourgeonnement chez un scyphistome. Bulletin de la Société Zoologique de France 45, 260261.Google Scholar
Petersen, K.W. (1990) Evolution and taxonomy in capitate hydroids and medusae (Cnidaria: Hydrozoa). Zoological Journal of the Linnean Society 100, 101231.CrossRefGoogle Scholar
Pitt, K.A. (2000) Life history and settlement preferences of the edible jellyfish Catostylus mosaicus (Scyphozoa: Rhizostomeae). Marine Biology 136, 269279.CrossRefGoogle Scholar
Raikova, E.V. (1988) On the systematic position of Polypodium hydriforme Ussov (Coelenterata). In Koltun, V.M. and Stepanjants, S.D. (eds) Sponges and Cnidaria. Contemporary state and perspectives of investigations. Leningrad: Zoological Institute of the USSR Academy of Sciences, pp. 116122. [In Russian.]Google Scholar
Raikova, E.V. (1994) Life cycle, cytology, and morphology of Polypodium hydriforme, a coelenterate parasite of the eggs of acipenseriform fishes. Journal of Parasitology 80, 122.CrossRefGoogle ScholarPubMed
Raikova, E. (2002) Polypodium hydriforme infection in the eggs of acipenseriform fishes. Journal of Applied Ichthyology 18, 405415.CrossRefGoogle Scholar
Rees, J.T., Hand, C. and Mills, C.E. (1976) The life cycle of Hydrocoryne bodegensis, new species (Coelenterata, Hydrozoa) from California, and a comparison with Hydrocoryne miurensis from Japan. Wasmann Journal of Biology 34, 108118.Google Scholar
Rees, W.J. (1957) Evolutionary trends in the classification of the capitate hydroids and medusae. Bulletin of the British Museum (Natural History) Zoology 5, 453534.Google Scholar
Ritchie, J. (1915) The hydroids of the Indian Museum. II—Annulella gemmata, a new and remarkable brackish-water hydroid. Records of the Indian Museum 11, 541568.Google Scholar
Ryland, J.S. (1997) Reproduction in Zoanthidea (Anthozoa: Hexacorallia). Invertebrate Reproduction and Development 31, 177188.CrossRefGoogle Scholar
Schulz, E. (1950) Psammohydra nanna, ein neues solitäres Hydrozoon in der westlichen Beltsee. (Studien an Hydrozoa, II). Kieler Meeresforschungen 7, 122137.Google Scholar
Shostak, S. (1993) Cnidaria. In Reproductive biology of invertebrates. Asexual propagation and reproductive strategies, volume 4, part A. Chichester: John Wiley & Sons, pp. 45105.Google Scholar
Smothers, J.F., von Dohlen, C.D., Smith, L.H. Jr and Spall, R.D. (1994) Molecular evidence that the myxozoan protists are metazoans. Science 265, 17191721.CrossRefGoogle ScholarPubMed
Stampar, S.N., Tronolone, V.B. and Morandini, A.C. (2006) Description and life cycle of the hydrozoan Hydractinia uniformis, sp. nov. (Cnidaria: Hydrozoa: Hydractiniidae), from the coast of southeastern Brazil. Zootaxa 1200, 4359.Google Scholar
Stepanjants, S. (1994) Which species of the genus Hydrocoryne (Hydrozoa, Hydrocorynidae) is found in the Sea of Japan? Zoological Zhurnal 73, 58.Google Scholar
Stretch, J.J. and King, J.M. (1980) Direct fission: an undescribed reproductive method in hydromedusae. Bulletin of Marine Science 30, 522526.Google Scholar
Tardent, P. (1963) Regeneration in the Hydrozoa. Biological Reviews 38, 293333.CrossRefGoogle Scholar
Walker, S.S. (1990) Everyday and esoteric reality in the Afro-Brazilian Candomble. History of Religions 30, 103128.CrossRefGoogle Scholar
Wedler, E. and Larson, R. (1986) Athecate hydroids from Puerto Rico and the Virgin Islands. Studies of Neotropical Fauna and Environment 21, 69101.CrossRefGoogle Scholar
Weill, R. (1930) Éssai d'une classification des nématocystes des cnidaires. Bulletin Biologique de la France et de la Belgique 64, 141155.Google Scholar
Weill, R. (1934) Contributions à l'etude des cnidaires et de leurs nématocystes. Travaux de la Station Zoologique de Wimereux 10, 1347.Google Scholar
Verger, P.F. (1981) Orixás. Deuses iorubás na África e no Novo Mundo. Salvador: Editora Corrupio.Google Scholar