Hostname: page-component-6bf8c574d5-mggfc Total loading time: 0 Render date: 2025-02-22T13:58:47.611Z Has data issue: false hasContentIssue false

Histological description of new specialized reproductive structures in Atlantic Tubastraea corals (Scleractinia, Dendrophylliidae)

Published online by Cambridge University Press:  21 February 2025

Aurea Helena Alves Silva
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
Jessika Alves
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
Fernanda Santana Dourado
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
Luca Zanetti
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
Dalton Amor Divino
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
André Amor Divino
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
Thalia Nepomuceno
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
Joseane Alcantara
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
Alisson Carvalho de Oliveira
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
Saulo Serra
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
Amilcar Farias
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
José Rogerio Silva
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
Rodrigo Johnsson
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
Elizabeth Gerardo Neves*
Affiliation:
Laboratório de Invertebrados Marinhos: Crustacea, Cnidaria e Fauna Associada (LABIMAR), Instituto de Biologia, Universidade Federal da Bahia (UFBA/IBIO), Salvador, Bahia, Brazil
*
Corresponding author: Elizabeth Gerardo Neves; Email: [email protected]

Abstract

The family Dendrophylliidae comprises a genus of azooxanthellate corals, Tubastraea (also known as ‘sun corals’ or ‘cup corals’), native from the Indo-Pacific and introduced into the Atlantic Ocean in the early 1940s. In Brazil, Tubastraea colonies were first registered on oil platforms on the northern coast of Rio de Janeiro state (22°S) in the late 1980s. Two decades later, these corals were for the first time identified in the Todos-os-Santos Bay (Bahia state, 13°S), a warmer environment with diverse marine ecosystems including estuaries, mangroves, and coral reefs. Intending to describe the biological cycle of exotic dendrophylliids from the Brazilian northeastern coast, histological analyses revealed three new reproductive structures for Scleractinia: (1) a mucin layer composed of acid glycoproteins surrounding immature sun coral oocytes, (2) trophonema or specialized cells connecting the oocyte to the adjacent gastrodermis, and (3) nucleolini, small condensations in nucleoli.

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adonin, LS, Shaposhnikova, TG and Podgornaya, O (2012) Aurelia aurita (Cnidaria) oocytes' contact plate structure and development. PLoS ONE 7, e46542.CrossRefGoogle Scholar
Alliegro, MC (2011) The Nucleolinus. A disappearing, forgotten and (maybe) misnamed organelle. Communicative & Integrative Biology 4, 147149.CrossRefGoogle ScholarPubMed
Alliegro, MC, Hartson, S and Alliegro, MA (2012) Composition and dynamics of the nucleolinus, a link between the nucleolus and cell division apparatus in surf clam (Spisula) oocytes. Journal of Biological Chemistry 287, 67026713.CrossRefGoogle ScholarPubMed
Alliegro, MA, Henry, JJ and Alliegro, MC (2010) Rediscovery of the nucleolinus, a dynamic RNA-rich organelle associated with the nucleolus, spindle, and centrosomes. Proceedings of the National Academy of Sciences 107, 1371813723.CrossRefGoogle ScholarPubMed
Babcock, RC (1990) Reproduction and development of the blue coral Heliopora coerulea (Alcyonaria: Coenothecalia). Marine Biology 104, 475481.CrossRefGoogle Scholar
Baird, AH, Blakeway, DR, Hurley, TJ and Stoddart, JA (2011) Seasonality of coral reproduction in the Dampier Archipelago, northern western Australia. Marine Biology 158, 275285.CrossRefGoogle Scholar
Bastos, N, Calazans, SH, Altvater, L, Neves, EG, Trujillo, AL, Sharp, WC, Hoffman, EA and Coutinho, R (2022) Western Atlantic invasion of sun corals: incongruence between morphology and genetic delimitation among morphotypes in the genus Tubastraea. Bulletin of Marine Science 98, 187210.Google Scholar
Benayahu, Y, Weil, D and Malik, Z (1992) Entry of algal symbionts into oocytes of the coral Litophyton arboreum. Tissue and Cell 24, 473482.CrossRefGoogle ScholarPubMed
Berzins, IK, Yanong, RPE, LaDouceur, EEB and Peters, EC (2021) Cnidaria. In LaDouceur, E (ed.), Invertebrate Histology. Hoboken, NJ: Wiley, pp. 5586. https://doi.org/10.1002/9781119507697.ch3.CrossRefGoogle Scholar
Cairns, SD (2000) A revision of the shallow-water azooxanthellate Scleractinia of the western Atlantic. Naturalis Biodiversity Center 75, 1192.Google Scholar
Castro, CB and Pires, DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bulletin of Marine Science 69, 357371.Google Scholar
De Paula, AF and Creed, JC (2004) Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: a case of accidental introduction. Bulletin of Marine Science 74, 175183.Google Scholar
De Paula, AF, Pires, DO and Creed, JC (2014) Reproductive strategies of two invasive sun corals (Tubastraea spp.) in the southwestern Atlantic. Journal of the Marine Biological Association of the United Kingdom 94, 481492.CrossRefGoogle Scholar
Eckelbarger, KJ, Hand, C and Uhlinger, KR (2008) Ultrastructural features of the trophonema and oogenesis in the starlet sea anemone, Nematostella vectensis (Edwardsiidae). Invertebrate Biology 127, 381395.CrossRefGoogle Scholar
Eckelbarger, KJ and Larson, RL (1988) Ovarian morphology and oogenesis in Aurelia aurita (Scyphozoa: Semaeostomae): ultrastructural evidence of heterosynthetic yolk formation in a primitive metazoan. Marine Biology 100, 103115.CrossRefGoogle Scholar
Fenner, D (1999) New observations on the stony coral (Scleractinia, Milleporidae, and Stylasteridae) species of Belize (Central America) and Cozumel (Mexico). Bulletin of Marine Science 64, 143154.Google Scholar
Glynn, PW, Colley, SB, Maté, JL, Cortés, J, Guzman, HM, Bailey, RL, Feingold, JS and Enochs, IC (2008) Reproductive ecology of the azooxanthellate coral Tubastraea coccinea in the Equatorial eastern Pacific: part V. Dendrophylliidae. Marine Biology 153, 529544.CrossRefGoogle Scholar
Goffredo, S, Arnone, S and Zaccanti, F (2002) Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Marine Ecology Progress Series 229, 8394.CrossRefGoogle Scholar
Goffredo, S, Radetić, J, Airi, V and Zaccanti, F (2005) Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia: Dendrophylliidae) in the Mediterranean. 1. Morphological aspects of gametogenesis and ontogenesis. Marine Biology 147, 485495.CrossRefGoogle Scholar
Hertwig, O and Hertwig, R (1879) Die Actinien: anatomisch und histologisch, mit besanderer Berücksichtigung des Nervenmuskelsystems. Jenaische Z. Naturwiss 14, 3980.Google Scholar
Hirose, M, Kinzie, R and Hidaka, M (2001) Timing and process of entry of zooxanthellae into oocytes of hermatypic corals. Coral Reefs 20, 273280.Google Scholar
Humason, GL, Presnell, JK and Schreibman, MP (1997) Humason's Animal Tissue Techniques. Baltimore, ML: Johns Hopkins University Press.Google Scholar
Laborel, J (1969/70) Madreporaires et hydrocoralliares recifaux des cotes Bresiliennes. Systematique, ecologie. repartition verticale et geographique. Results Scientifique du Campagne de Calypso 9, 171229.Google Scholar
Lang, T, Hansson, GC and Samuelsson, T (2007) Gel-forming mucins appeared early in metazoan evolution. Proceedings of the National Academy of Sciences 104, 1620916214.CrossRefGoogle ScholarPubMed
Larkman, AU and Carter, MA (1982) Preliminary ultrastructural and autoradiographic evidence that the trophonema of the sea anemone Actinia fragacea has a nutritive function. International Journal of Invertebrate Reproduction 4, 375379.CrossRefGoogle Scholar
Lauretta, D, Wagner, D and Penchaszadeh, PE (2018) First record of a trophonema in black corals (Cnidaria: Antipatharia). Coral Reefs 37, 581584.CrossRefGoogle Scholar
Leão, ZMAN (1986) Guia para identificação dos corais do Brasil. Salvador, BA: Universidade Federal da Bahia, Instituto de Geociências, Programa de Pesquisa e PósGraduação em Geofísica.Google Scholar
Levitan, S, Sher, N, Brekhman, V, Ziv, T, Lubzens, E and Lotan, T (2015) The making of an embryo in a basal metazoan: proteomic analysis in the sea anemone Nematostella vectensis. Proteomics 15, 40964104.CrossRefGoogle Scholar
Lopes, C, Malhão, F and Rocha, E (2016) Curso de Técnicas Histológicas. Projeto Aprender a Conhecer o Ambiente Marinho de Portugal. Porto, PT: BioMar.Google Scholar
Love, R (1962) Improved staining of the nucleoproteins of the nucleolus. Journal of Histochemistry & Cytochemistry 10, 227.CrossRefGoogle Scholar
Love, R and Walsh, RJ (1968a) The relation of nucleolini to nucleolar vacuoles in the living cell. Experimental Cell Research 53, 432446.CrossRefGoogle Scholar
Love, R and Walsh, RJ (1968b) Studies of the cytochemistry of nucleoproteins II. Improved staining methods with toluidine blue and ammonium molybdate. Journal of Histochemistry & Cytochemistry 11, 188196.CrossRefGoogle Scholar
Mercier, A, Sun, Z and Hamel, JF (2011) Reproductive periodicity, spawning and development of the deep-sea scleractinian coral Flabellum angulare. Marine Biology 158, 371380.CrossRefGoogle Scholar
Moiseeva, E, Rabinowitz, C, Paz, G and Rinkevich, B (2017) Histological study on maturation, fertilization and the state of gonadal region following spawning in the model sea anemone, Nematostella vectensis. PLoS ONE 12, e0182677.CrossRefGoogle Scholar
Montgomery, TD (1898) Comparative cytological studies, with especial regard to the morphology of the nucleolus. Journal of Morphology 15, 265582.CrossRefGoogle Scholar
Neves, EG (2000) Histological analysis of reproductive trends of three Porites species from Kane'ohe Bay, Hawai'i. Pacific Science 54, 195200.Google Scholar
Neves, EG and Da Silveira, FL (2003) Release of planula larvae, settlement and development of Siderastrea stellata Verrill, 1868 (Anthozoa, Scleractinia). Hydrobiologia 501, 139147.CrossRefGoogle Scholar
Neves, E and Pires, D (2002) Sexual reproduction of Brazilian coral Mussismilia hispida (Verrill, 1902). Coral Reefs 21, 161168.CrossRefGoogle Scholar
Orejas, C, Antón-Sempere, S, Terrón-Sigler A, and Grau, A (2023) Reproductive characteristics and gametogenic cycle of the scleractinian coral Dendrophyllia ramea. PeerJ 11, e16079.CrossRefGoogle ScholarPubMed
Permata, W, Kinzie, R and Hidaka, M (2000) Histological studies on the origin of planulae of the coral Pocillopora damicornis. Marine Ecology Progress Series 200, 191200.CrossRefGoogle Scholar
Ryland, JS (1997) Reproduction in Zoanthidea (Anthozoa: Hexacorallia). Invertebrate Reproduction & Development 31, 177188.CrossRefGoogle Scholar
Sammarco, P, Atchison, A and Boland, G (2004) Expansion of coral communities within the northern Gulf of Mexico via offshore oil and gas platforms. Marine Ecology Progress Series 280, 129143.CrossRefGoogle Scholar
Sampaio, CLS, Miranda, RJ, Maia-Nogueira, R and Nunes, JDACC (2012) New occurrences of the nonindigenous orange cup corals Tubastraea coccinea and T. tagusensis (Scleractinia: Dendrophylliidae) in southwestern Atlantic. Check List 8, 528530.CrossRefGoogle Scholar
Santos, KRP, Aguiar Júnior, FCA, Antonio, EA, Silva, FR, Silva, KT, Marinho, KS and Lima Junior, NB (2021) Manual de técnica histológica de rotina e de colorações. Recife, PE: Universidade Federal do Pernambuco.Google Scholar
Serra, S, Bastos, N, Coutinho, R, Schizas, NV, Johnsson, R and Neves, EG (2024) Four new species of Tubastraea (Scleractinia, Dendrophylliidae) from the Brazilian Coast, southwestern Atlantic. Pan American Journal of Aquatic Sciences 19, 113135.Google Scholar
Vaughan, TW and Wells, JW (1943) Revision of the Suborders Families, and Genera of the Scleractinia. Boulder, CL: Geological Society of America Special Papers.CrossRefGoogle Scholar
Waller, R, Tyler, P and Gage, J (2002) Reproductive ecology of the deep-sea scleractinian coral Fungiacyathus marenzelleri (Vaughan, 1906) in the northeast Atlantic Ocean. Coral Reefs 21, 325331.CrossRefGoogle Scholar