Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-07T18:38:32.752Z Has data issue: false hasContentIssue false

The growth and population dynamics of Octopus insularis targeted by a pot longline fishery in north-eastern Brazil

Published online by Cambridge University Press:  28 January 2022

B.B. Batista
Affiliation:
Universidade Federal do Oeste do Pará, Instituto de Ciências e Tecnologia das Águas, Santarém, PA, Brazil
H. Matthews-Cascon
Affiliation:
Departamento de Biologia, Universidade Federal do Ceará, Fortaleza, CE, Brazil
R.A. Marinho
Affiliation:
Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE, Brazil
E. Kikuchi
Affiliation:
Universidade Federal do Rio Grande, Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Rio Grande, RS, Brazil
M. Haimovici*
Affiliation:
Universidade Federal do Rio Grande, Instituto de Oceanografia, Rio Grande, RS, Brazil
*
Author for correspondence: M. Haimovici, E-mail: [email protected]

Abstract

The population dynamics of the stout reef octopus, Octopus insularis fished with longlines of pots in mid-shelf waters of north-eastern Brazil was studied based on fishermen's logbooks and onboard monthly fishing trips from September 2009 to August 2010. Specimens marked with oxytetracycline kept in tanks for up to 21 days provided evidence of the daily deposition of growth increments in the lateral wall of the upper beaks. Sampled specimens weighed 50–1280 g and had 43–172 daily growth increments. Compared with congeneric species from higher latitudes, O. insularis grows faster and has a shorter longevity in the north-eastern Brazil tropical environment. Total catches and catch-per-unit effort were substantially higher in the dry season, with less wind and cooler temperatures. The presence of larger specimens was seasonal, correlated with the chlorophyll-a levels recorded six months earlier. The year-round presence of mature females and males, spawned females, and egg masses attached to the pots, were considered evidence of migration of small and young specimens from coastal areas towards the 20–40 m depth range for reproduction. Annual landings attained ~200 tonnes (2005–2010). Although recent landing statistics are missing, fishermen interviewed in 2021 claimed that the fishery was still profitable. It is suggested that, despite the lack of management, the fast growth, year-round reproduction and limited market for this relatively small octopus, prevented the fishery from collapse and reinforces the current view of the high resilience of cephalopod fisheries.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, LC (2015) Estratégias de exploração e comércio da pesca artesanal de polvo. PhD Thesis. Universidade Federal do Rio Grande do Norte, Natal, Brazil.Google Scholar
Arkhipkin, AI, Bizikov, VA, Doubleday, ZA, Laptikhovsky, VV, Lishchenko, FV, Perales-Raya, C and Hollyman, PR (2018) Techniques for estimating the age and growth of mollusks: cephalopoda. Journal of Shellfish Research 37, 783792.CrossRefGoogle Scholar
Arkhipkin, AI, Hendrickson, LC, Payá, I, Pierce, GJ, Roa-Ureta, RH, Robin, JP and Winter, A (2020) Stock assessment and management of cephalopods: advances and challenges for short-lived fishery resources. ICES Journal of Marine Science 78, 714730.CrossRefGoogle Scholar
Batista, BB (2011) Estimativa da idade do polvo, Octopus insularis capturado com espinhel de potes no Ceará, relacionada com os estágios de maturação gonadal. Master Thesis. Universidade Federal do Ceará, Fortaleza, Brazil.Google Scholar
Boyle, P and Rodhouse, P (2005) Cephalopods: Ecology and Fisheries, 1st Edn. Oxford: Blackwell Science.CrossRefGoogle Scholar
Braga, MSD, Marinho, RA, Batista, BB and Rocha, EP (2007) Histórico e descrição da pesca do polvo, Octopus cf vulgaris, com potes, no estado do Ceará. Arquivos de Ciências do Mar 40, 513.Google Scholar
Caddy, JF and Rodhouse, PG (1998) Cephalopod and groundfish landings: evidence for ecological change in global fisheries? Reviews in Fish Biology and Fisheries 8, 431444.CrossRefGoogle Scholar
Campana, S (2001) Accuracy: precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59, 197242.CrossRefGoogle Scholar
Canali, E, Ponte, G, Belcari, P, Rocha, F and Fiorito, G (2011) Evaluating age in Octopus vulgaris: estimation, validation and seasonal differences. Marine Ecology Progress Series 441, 141149.CrossRefGoogle Scholar
Castanhari, G and Tomás, ARG (2012) Beak increment counts as a tool for growth studies of the common octopus Octopus vulgaris in southern Brazil. Boletim do Instituto de Pesca 38, 323331.Google Scholar
Crane, DP, Ogle, DH and Shoup, DE (2020) Use and misuse of a common growth metric: guidance for appropriately calculating and reporting specific growth rate. Reviews in Aquaculture 12, 15421547.Google Scholar
Crespi-Abril, AC and Barón, PJ (2012) Revision of the population structuring of Illex argentinus (Castellanos, 1960) and a new interpretation based on modeling the spatio-temporal environmental suitability for spawning and nursery. Fisheries Oceanography 21, 199214.CrossRefGoogle Scholar
Dias, FJS, Castro, B and Lacerda, LD (2013) Continental shelf water masses off the Jaguaribe River (4S), northeastern Brazil. Continental Shelf Research 66, 123135.CrossRefGoogle Scholar
Díaz, JM, Ardila, N and Gracia, A (2000) Calamares y Pulpos (Mollusca: Cephalopoda) del Mar Caribe Colombiano. Biota Colombiana 1, 195201.Google Scholar
Doubleday, Z, Semmens, JM, Pecl, G and Jackson, G (2006) Assessing the validity of stylets as ageing tools in Octopus pallidus. Journal of Experimental Marine Biology and Ecology 338, 3542.CrossRefGoogle Scholar
Doubleday, ZA, Prowse, TAA, Arkhipkin, A, Pierce, GJ, Semmens, J, Steer, M, Leporati, SC, Lourenço, S, Quetglas, A, Sauer, W and Gillanders, BM (2016) Global proliferation of cephalopods. Current Biology 26, R406R407.CrossRefGoogle ScholarPubMed
FAO (2020) The State of World Fisheries and Aquaculture 2020. Sustainability in action. Food and Agriculture Organization of the United Nations.Google Scholar
Forsythe, JW and Van Heukelem, WF (1987) Growth. In Boyke, PR (ed.), Cephalopod Life Cycles. London: Academic Press, pp. 135155.Google Scholar
Funceme (2020) Fundação Cearense de Meteorologia e Recursos Hídricos. Monitoramento. Available at http://www.funceme.br/?page_id=2383.Google Scholar
González-Gómez, R, de los Angeles Barriga-Sosa, I, Pliego-Cárdenas, R, Jiménez-Badillo, L, Markaida, U, Meiners-Mandujano, C and Morillo-Velarde, PS (2018) An integrative taxonomic approach reveals Octopus insularis as the dominant species in the Veracruz Reef System (southwestern Gulf of Mexico). PeerJ 6, e6015.CrossRefGoogle Scholar
González-Gómez, R, Meiners-Mandujano, C, Morillo-Velarde, PS, Jiménez-Badillo, L and Markaida, U (2020) Reproductive dynamics and population structure of Octopus insularis from the Veracruz Reef System Marine Protected Area, Mexico. Fisheries Research 221, 105385.CrossRefGoogle Scholar
Guerra, A (1975) Determinación de las diferentes fases del desarrollo sexual de Octopus vulgaris Lamarck, mediante un índice de madurez. Investigation Pesquera 39, 397416.Google Scholar
Guerrero-Kommritz, J and Camelo-Guarin, S (2015) Two new octopod species (Mollusca: Cephalopoda) from the southern Caribbean. Marine Biodiversity 46, 589602.CrossRefGoogle Scholar
Haimovici, M, Leite, TS, Marinho, RA, Batista, BB, Madrid, RM, Oliveira, JEL, Lima, FD and Candice, L (2014) As pescarias de polvos do nordeste do brasil. In Haimovici, M, Andriguetto, JM and Sunye, PF (eds), A Pesca Marinha E Estuarina no Brasil: Estudos de Caso. Rio Grande, RS: Editora da FURG, pp. 147160.Google Scholar
Hammer, Ø, Harper, DAT and Ryan, PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 19.Google Scholar
Hermosilla, CA, Rocha, F, Fiorito, G, González, AF and Guerra, A (2010) Age validation in common octopus Octopus vulgaris using stylet increment analysis. ICES Journal of Marine Science 67, 14581463.CrossRefGoogle Scholar
Hernández-López, JL, Castro-Hernández, JJ and Hernández-García, V (2001) Age determined from the daily deposition of concentric rings on common octopus (Octopus vulgaris) beaks. Fishery Bulletin 99, 679684.Google Scholar
Herwig, JN, Depczynski, M, Roberts, JD, Semmens, JM, Gagliano, M and Heyward, AJ (2012) Using age-based life history data to investigate the life cycle and vulnerability of Octopus cyanea. PLoS ONE 7, e43679.CrossRefGoogle ScholarPubMed
Huffard, CL, Caldwell, RL and Boneka, F (2008) Mating behavior of Abdopus aculeatus (d'Orbigny 1834) (Cephalopoda: Octopodidae) in the wild. Marine Biology 154, 353362.CrossRefGoogle Scholar
Jiménez-Badillo, MDL, del Río-Rodríguez, RE, Gómez-Solano, MI, Cu-Escamilla, A and Méndez-Aguilar, D (2008) Madurez Gonádica del Pulpo Octopus vulgaris en el Golfo de México: Análisis Macroscópico Y Microscópico. México: Universidad Autónoma de Campeche.Google Scholar
Legendre, P and Legendre, L (1998) Numerical Ecology, 2nd Edn. Amsterdam: Elsevier.Google Scholar
Leite, TS, Haimovici, M, Molina, W and Warnke, K (2008) Morphological and genetic description of Octopus insularis new species (Cephalopoda: Octopodidae), a cryptic species in the Octopus vulgaris complex from the tropical southwestern Atlantic. Journal of Molluscan Studies 74, 6374.CrossRefGoogle Scholar
Leite, TS, Haimovici, M and Mather, J (2009 a) Octopus insularis (Octopodidae), evidences of a specialized predator and a time-minimizing hunter. Marine Biology (Berlin) 156, 23552367.CrossRefGoogle Scholar
Leite, TS, Andrade, LCA, Haimovici, M, Aguiar, RS and Lins-Oliveira, JE (2009 b) Lulas e polvos. In Hazin, FHV (ed.), O Arquipélago São Pedro E São Paulo: 10 Anos Estação Científica. Brasília: SECIRM, pp. 186193.Google Scholar
Leite, TS, Haimovici, M, Mather, J and Oliveira, JL (2009 c) Habitat, distribution, and abundance of the commercial octopus (Octopus insularis) in a tropical oceanic island, Brazil: information for management of an artisanal fishery inside a marine protected area. Fisheries Research 98, 8591.CrossRefGoogle Scholar
Lenz, TM, Elias, NH, Leite, TS and Vidal, E (2015) First description of the eggs and paralarvae of the tropical octopus, Octopus insularis, under culture conditions. American Malacological Bulletin 33, 101109.CrossRefGoogle Scholar
Leporati, SC, Semmens, JM and Pecl, GT (2008) Determining the age and growth of wild octopus using stylet increment analysis. Marine Ecology Progress Series 367, 213222.CrossRefGoogle Scholar
Leporati, SC, Hart, AM, Larsen, R, Franken, LE and De Graaf, M (2015) Octopus life history relative to age, in a multigeared developmental fishery. Fisheries Research 165, 2841.CrossRefGoogle Scholar
Lima, FD, Leite, TS, Haimovici, M and Oliveira, JEL (2014 a) Gonadal development and reproductive strategies of the tropical octopus (Octopus insularis) in northeastern Brazil. Hydrobiologia 725, 721.CrossRefGoogle Scholar
Lima, FD, Leite, TS, Haimovici, M, Nóbrega, MF and Oliveira, JEL (2014 b) Population structure and reproductive dynamics of Octopus insularis (Cephalopoda: Octopodidae) in a coastal reef environment along northeastern Brazil. Fisheries Research 152, 8692.CrossRefGoogle Scholar
Lima, FD, Strugnell, JM, Leite, TS and Lima, SMQ (2020) A biogeographic framework of octopod species diversification: the role of the Isthmus of Panama. PeerJ 8, e8691.CrossRefGoogle ScholarPubMed
Lopes, PFM, Andrade, LCA, Pennino, MG and Leite, TS (2021) Modeling the inter-annual fishing variability in Octopus insularis (Leite & Haimovici 2008). Fisheries Oceanography 30, 515526.CrossRefGoogle Scholar
Madrid, RMM (2009) Estudo de viabilidade técnica, econômica e de mercado da introdução do espinhel com potes para a pesca de polvo como alternativa da pesca da lagosta no Estado do Ceará. National Research Council. Report no. 473156/2006–7, 49 pp.Google Scholar
Maia, LP, Jiménez, JA, Raventos, JS and Morais, JO (1999) Dune migration and aeolian transport along Ceará state, Brazil: downscaling and upscaling aeolian induced processes. Arquivos de Ciências do Mar 33, 99106.Google Scholar
Marinho, RA (2011) Programa de monitoramento da pesca de polvo nas regiões norte e nordeste do Brasil. Ministério da Pesca e Aquicultura. Report no. 00350.001296/2008-71, 68 pp.Google Scholar
Martins, VS, Souto, FJB and Schiavetti, A (2012) Conexões entre pescadores e polvos na comunidade de Coroa Vermelha, Santa Cruz Cabrália, Bahia. Sitientibus, Série Ciências Biológicas 11, 121131.CrossRefGoogle Scholar
Mather, J (1988) Daytime activity of juvenile Octopus vulgaris in Bermuda. Malacologia 29, 6976.Google Scholar
Messenger, JB, Nixon, M and Ryan, KP (1985) Magnesium chloride as an anesthetic for cephalopods: comparative biochemistry and physiology. C, Comparative Pharmacology and Toxicology 82, 203205.Google Scholar
Miserez, A, Rubin, D and Waite, JH (2010) Cross-linking chemistry of squid beak. Journal of Biological Chemistry 285, 3811538124.CrossRefGoogle ScholarPubMed
NASA GES DISC (2021) Available at https://giovanni.gsfc.nasa.gov/giovanni/#service (Accessed online 7 December 2020).Google Scholar
Oosthuizen, A (2003) A development and management framework for a new Octopus vulgaris fishery in South Africa. PhD thesis. Rhodes University, South Africa.Google Scholar
Ortiz, N, , ME, Marquez, F and Glembocki, NG (2011) The reproductive cycle of the red octopus Enteroctopus megalocyathus in fishing areas of Northern Patagonian coast. Fisheries Research 110, 217223.CrossRefGoogle Scholar
Pauly, D and Zeller, D (2016) Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature Communications 7, 19.CrossRefGoogle ScholarPubMed
Perales-Raya, C, Bartolomé, A, García-Santamaría, MT, Pascual-Alayón, P and Almansa, E (2010) Age estimation obtained from analysis of octopus (Octopus vulgaris Cuvier, 1797) beaks: improvements and comparisons. Fisheries Research 106, 171176.CrossRefGoogle Scholar
Perales-Raya, C, Almansa, E, Bartolomé, A, Felipe, BC, Iglesias, J, Sánchez, FJ and Rodríguez, C (2014) Age validation in Octopus vulgaris beaks across the full ontogenetic range: beaks as recorders of life events in octopuses. Journal of Shellfish Research 33, 481493.CrossRefGoogle Scholar
Pitcher, T and Hart, PJB (1982) Fisheries Ecology. London & Canberra: Croom Helm.Google Scholar
Raya, CP and Hernández-González, CL (1998) Growth lines within the beak microstructure of the octopus Octopus vulgaris Cuvier, 1797. African Journal of Marine Science 20, 135142.CrossRefGoogle Scholar
Ricker, WE (1975) Computation and interpretation of biological statistics of fish populations. Bulletin – Fisheries Research Board of Canada 191, 1382.Google Scholar
Rodhouse, PGK, Pierce, GJ, Nichols, OC, Sauer, WHH, Arkhipkin, AI, Laptikhovsky, VV, Lipinski, MR, Ramos, JE, Gras, M, Kidokoro, H, Sadayasu, K, Pereira, J, Lefkaditou, E, Pita, C, Gasalla, M, Haimovici, M, Sakai, M and Downey, N (2014) Environmental effects on cephalopod population dynamics: implications for management of fisheries. Advances Marine Biology 67, 99223.CrossRefGoogle ScholarPubMed
Sauer, WH, Gleadall, IG, Downey-Breedt, N, Doubleday, Z, Gillespie, G, Haimovici, M, Ibáñez, CM, Katugin, ON, Leporati, S, Lipinski, MR, Markaida, U, Ramos, JE, Rosa, R, Villanueva, R, Arguelles, J, Briceño, FA, Carrasco, SA, Che, LJ, Chen, C, Cisneros, R, Conners, E, Crespi-Abril, AC, Kulik, VV, Drobyazin, EN, Emery, T, Fernández-Álvarez, FA, Furuya, H, González, LW, Gough, C, Krishnan, P, Kumar, B, Leite, T, Lu, C, Mohamed, KS, Nabhitabhata, J, Noro, K, Petchkamnerd, J, Putra, D, Rocliffe, S, Sajikumar, KK, Sakaguchi, H, Samuel, D, Sasikumar, G, Wada, T, Zheng, X, Tian, Y, Pang, Y, Yamrungrueng, A and Pecl, G (2020) World Octopus Fisheries. Reviews in Fisheries Science & Aquaculture 29, 1151.Google Scholar
Semmens, JM, Pecl, GT, Villanueva, R, Jouffre, D, Sobrino, I, Wood, J and Rigby, PR (2004) Understanding octopus growth: patterns, variability, and physiology. Marine and Freshwater Research 55, 367377.CrossRefGoogle Scholar
Smale, MJ and Buchan, PR (1981) Biology of Octopus vulgaris off the east coast of South Africa. Marine Biology 65, 112.CrossRefGoogle Scholar
Summerhayes, CP, Coutinho, PN, Franca, AMC and Ellis, JP (1975) Salvador to Fortaleza, northeastern Brazil. In Milliman, JD and Summerhayes, CP (eds), Upper Continental Margin Sedimentation off Brazil. Contributions to Sedimentary Geology. Stuttgart: Schweizerbart Science Publishers, pp. 4479.Google Scholar
Windguru (2020) Available at https://www.windguru.cz/archive-stats.php?id_spot=743 (Accessed online 8 February 2020).Google Scholar
Zar, JH (1999) Biostatistical Analysis. Englewood Cliffs, NJ: Prentice Hall.Google Scholar