Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T14:03:11.922Z Has data issue: false hasContentIssue false

Growth and development of Pseudocalanus elongatus and Calanus sp. in the laboratory

Published online by Cambridge University Press:  11 May 2009

Brenda M. Thompson
Affiliation:
Ministry of Agriculture, Fisheries and Food, Directorate of Fisheries Research, Fisheries Laboratory, Lowestoft, Suffolk, NR33 0HT

Extract

Laboratory experiments to determine the stage durations of Pseudocalanus elongatus (Boeck) and Calanus sp. have been described. The duration of all the nauplius and copepodid stages at temperatures ranging from 4° to 15 CC is given for both species. The effect of temperature on the development rate of copepod eggs has also been determined at these temperatures. The effects of food supply and temperature on the distribution, abundance and development rate of different species of copepods are discussed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Corkett, C. J., 1970. Techniques for breeding and rearing marine calanoid copepods. Helgoländer wissenschaftliche Meeresuntersuchungen, 20, 318324.CrossRefGoogle Scholar
Corkett, C. J., 1972. Development rate of copepod eggs of the genus Calanus. Journal of Experimental Marine Biology and Ecology, 10, 171175.CrossRefGoogle Scholar
Corkett, C. J. & McLaren, I. A., 1970. Relationships between development rate of eggs and older stages of copepods. Journal of the Marine Biological Association of the United Kingdom, 50, 161168.CrossRefGoogle Scholar
Corkett, C. J. & McLaren, I. A., 1978. The biology of Pseudocalanus. Advances in Marine Biology, 15, 1231.Google Scholar
Crisp, D. J., 1954. The breeding of Balanus porcatus (da Costa) in the Irish Sea. Journal of the Marine Biological Association of the United Kingdom, 33, 473496.CrossRefGoogle Scholar
Halldall, P. & French, C. S., 1956. The growth of algae, in crossed gradients of light intensity and temperature. Yearbook of the Carnegie Institution of Washington, no. 55, 261265.Google Scholar
Harris, R. P. & Paffenhöfer, G.-A., 1976. The effect of food concentration on cumulative ingestion and growth efficiency of two small planktonic copepods. Journal of the Marine Biological Association of the United Kingdom, 56, 875888.CrossRefGoogle Scholar
Hart, R. C. & McLaren, I. A., 1978. Temperature acclimation and other influences on embryonic duration in the copepod Pseudocalanus sp. Marine Biology, 45, 2330.CrossRefGoogle Scholar
Katona, S. K. & Moodie, C. F., 1969. Breeding of Pseudocalanus elongatus in the laboratory. Journal of the Marine Biological Association of the United Kingdom, 49, 743747.CrossRefGoogle Scholar
Kraefft, F., 1910. Über das plankton in Ost- und Nordsee und den Verbindingsgebieten, mit besonderes, Berücksichtigung der copepoden. Wissenschaftliche Meeresuntersuchungen der Kommission zur wissenschaftlichen Untersuchung der deutschen Meere (Abteilung Kiel), 11, 29107.Google Scholar
Landry, M. R., 1975. Seasonal temperature effects and predicting development rates of marine copepod eggs. Limnology and Oceanography, 20, 434440.CrossRefGoogle Scholar
Last, J. M., 1978 a. The food of four species of pleuronectiform larvae in the eastern English Channel and southern North Sea. Marine Biology, 45, 359368.CrossRefGoogle Scholar
Last, J. M., 1978 b. The food of three species of gadoid larvae in the eastern English Channel and southern North Sea. Marine Biology, 45, 377386.CrossRefGoogle Scholar
Last, J. M., 1980. The food of twenty species of fish larvae in the west-central North Sea. Fisheries Research Technical Report, Lowestoft, no. 60, 44 pp.Google Scholar
Lebour, M. V., 1918. The food of post-larval fish. Journal of the Marine Biological Association the United Kingdom, 11, 433469.CrossRefGoogle Scholar
Lebour, M. V., 1919 a. Feeding habits of some young fish. Journal of the Marine Biological Association of the United Kingdom, 12, 921.CrossRefGoogle Scholar
Lebour, M. V., 1919 b. The food of post larval fish. No. II (1918). Journal of the Marine Biological Association ofthe United Kingdom, 12, 2247.CrossRefGoogle Scholar
Lebour, M. V., 1920. The food of young fish. No. III (1919). Journal of the Marine Biological Association of the United Kingdom, 12, 261324.CrossRefGoogle Scholar
Mclaren, I. A., 1965. Some relationships between temperature and egg size, body size, development rate, and fecundity of the copepod Pseudocalanus. Limnology and Oceanography, 10, 528538.CrossRefGoogle Scholar
McLaren, I. A., 1966. Predicting the development rate of copepod eggs. Biological Bulletin. Marine Biology Laboratory, Woods Hole, Mass., 131, 457469.CrossRefGoogle Scholar
McLaren, I. A., Walker, D. A. & Corkett, C. J., 1968. Effects of salinity on mortality and development rate of eggs of the copepod Pseudocalanus minutus. Canadian Journal of Zoology, 46, 12671269.CrossRefGoogle Scholar
Marshall, S. M., 1924. The food of Calanus finmarchicus during 1923. Journal of the Marine Biological Association of the United Kingdom, 13, 473479.CrossRefGoogle Scholar
Marshall, S. M., 1963. Copepods and their food. Report of the Scottish Marine Biological Association, 1962–1963, p. 16.Google Scholar
Marshall, S. M. & Orr, A. P., 1956. On the biology of Calanus finmarchicus. IX. Feeding and digestion in the young stages. Journal of the Marine Biological Association of the United Kingdom, 35, 587603.CrossRefGoogle Scholar
Marshall, S. M. & Orr, A. P., 1972. The Biology of a Marine Copepod, Calanus finmarchicus (Gunnerus). vii, 195 pp. Springer-Verlag.Google Scholar
Matthews, J. B. L., 1966. Experimental investigations of the systematic status of Calanus finmarchicus and C. glacialis (Crustacea: Copepoda). In Some Contemporary Studies in Marine Science (ed. H., Barnes), pp. 479492. London: George Allen and Unwin Ltd.Google Scholar
Mullin, M. M. & Brooks, E. R., 1976. Some consequences of distributional homogeneity of phytoplankton and zooplankton. Limnology and Oceanography, 21, 784796.CrossRefGoogle Scholar
Nicholls, A. G., 1933. On the biology of Calanus finmarchicus. I. Reproduction and seasonal distribution in the Clyde Sea area during 1932. Journal of the Marine Biological Association of the United Kingdom, 19, 83109.CrossRefGoogle Scholar
Oberg, M., 1906. Die metamorphose der plankton-copepoden der Kieler Bucht. Wissenschaftliche Meeresuntersuchungen der Kommission zur wissenschaftlichen Untersuchung der deutschen Meere (Abteilung Kiel), 9, 39103.Google Scholar
Ogilvie, H. S., 1953. Copepod Nauplii I. Fiches d'identification du zooplancton, sheet 50.Google Scholar
Paffenhöfer, G.-A., 1970. Cultivation of Calanus helgolandicus under controlled conditions. Helgoländer wissenschaftliche Meeresuntersuchungen, 20, 346359.CrossRefGoogle Scholar
Paffenhöfer, G.-A. & Harris, R. P., 1976. Feeding, growth and reproduction of the marine planktonic copepod Pseudocalanus elongatus Boeck. Journal of the Marine Biological of the United Kingdom, 56, 327344.Google Scholar
Raymont, J. E. G. & Gross, F., 1942. On the feeding and breeding of Calanus finmarchicus under laboratory conditions. Proceedings of the Royal Society of Edinburgh (B), 61, 267287.Google Scholar
Thomas, W. H., Scotten, H. L. & Bradshaw, J. S., 1963. Thermal gradient incubators for small aquatic organisms. Limnology and Oceanography, 8, 357360.CrossRefGoogle Scholar
Vidal, J., 1980 a. Physioecology of zooplankton. I. Effects of phytoplankton concentration, temperature, and body size on the growth rate of Calanus pacificus and Pseudocalanus sp. Marine Biology, 56, 111134.CrossRefGoogle Scholar
Vidal, J., 1980 b. Physioecology of zooplankton. II. Effects of phytoplankton concentration, temperature, and body size on the development and moulting rates of Calanus pacificus and Pseudocalanus sp. Marine Biology, 56, 135146.CrossRefGoogle Scholar
Walne, P. R., 1966. Experiments on the large-scale culture of the larvae of Ostrea edulis L. Fishery Investigations. Ministry of Agriculture, Fisheries and Food (ser. 2), 25(4), 53 pp.Google Scholar