Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T14:08:28.472Z Has data issue: false hasContentIssue false

Functional morphology, biology and sexual strategy of the circumboreal, adventitious crypt-building, Crenella decussata (Bivalvia: Mytiloidea: Crenellidae)

Published online by Cambridge University Press:  14 December 2015

Brian Morton
Affiliation:
School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
Grete E. Dinesen*
Affiliation:
Section for Ecosystem based Marine Management, National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund Castle, Jægersborg Allé 1, 2920 Charlottenlund, Denmark
Kurt W. Ockelmann
Affiliation:
Helsingør Marine Biological Laboratory, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
*
Correspondence should be addressed to: G. E. Dinesen, Section for Ecosystem based Marine Management, National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund Castle, Jægersborg Allé 1, 2920 Charlottenlund, Denmark email: [email protected]

Abstract

The anatomy of Crenella decussata (Mytiloidea) is described. Individuals of this circumboreal species occupy granular crypts composed of sand grains held in place by mucus. The swollen basal region of the tubule is occupied by an individual, which connects to the sediment surface by two posterior tubes accommodating the inhalant and exhalant streams. There is reduction in musculature and, most importantly, anterior foreshortening of the outer ctenidial demibranchs and loss of the labial palps. This creates an anterior space in the mantle for the initial brooding of fertilized ova by females to the prodissoconch stage. Subsequently, these larvae are transferred to the exhalant tube of the crypt wherein they attach by a single fine byssal thread and are further brooded until the crawl-away juvenile stage is attained. Experimental studies of larval behaviour suggest that parental pheromones sustain the female/offspring bond. Newly hatched individuals responded to parental exhalant water by actively attaching themselves using a byssal thread. This response persisted for 28 days, but not after 55 days when, we suggest, the pheromonal response ceases and offspring are developed sufficiently to take up life in their own nests. Offspring retrieved from parental crypts and fed continuously reached an average shell length of 500 μm after 7.5 months. Brooded offspring thus appear to rely on embryonal energy resources until post-metamorphosis, after which suspension feeding becomes essential for further growth and development before the parental crypt is vacated.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amler, M.R.W. (1999) Synoptical classification of fossil and Recent Bivalvia. Geologica et Palaeontologica 33, 237248.Google Scholar
Atkins, D. (1937a) On the ciliary mechanisms and interrelationships of lamellibranchs. Part I. New observations on sorting mechanisms. Quarterly Journal of Microscopical Science 79, 181308.Google Scholar
Atkins, D. (1937b) On the ciliary mechanisms and interrelationships of lamellibranchs. Part III. Types of lamellibranch gills and their food currents. Quarterly Journal of Microscopical Science 79, 375421.Google Scholar
Bergmans, W. (1978) Taxonomic revision of Recent Australian Nuculidae (Mollusca: Bivalvia) except Ennucula Iredale, 1931. Records of the Australian Museum 31, 673736.Google Scholar
Bernard, F.R. (1983) Catalogue of the living Bivalvia of the eastern Pacific Ocean: Bering Strait to Cape Horn. Canadian Special Publication of Fisheries and Aquatic Sciences 61, i–vii + 1203.Google Scholar
Bieler, R., Carter, J.G. and Coan, E.V. (2010) Classification of bivalve families. In Bouchet, P. and Rocroi, J.-P. (eds) Nomenclator of bivalve families. Malacologia 52, 113133.Google Scholar
Bieler, R. and Mikkelsen, P.M. (2006) Bivalvia – a look at the branches. Zoological Journal of the Linnean Society 148, 223235.CrossRefGoogle Scholar
Bieler, R., Mikkelsen, P.M., Collins, T.M., Glover, E.A., Gonźalez, V.L., Graf, D.L., Harper, E.M., Healey, J., Kawauchi, G.Y., Sharma, P.P., Staubach, S., Strong, J., Taylor, J.D., Tëmkin, I., Zardus, J.D., Clark, S., Guzmán, A., McIntyre, E., Sharp, P. and Giribet, G. (2014) Investigating the bivalve tree of life – an exemplar-based approach combining molecular and novel morphological characters. Invertebrate Systematics 28, 32115.Google Scholar
Boss, K.J. (1982) Mollusca. In Parker, S.P. (ed.) Synopsis and classification of living organisms, Volume 1. New York, NY: McGraw-Hill Book Company, pp. 9451166.Google Scholar
Bouchet, P. and Rocroi, J.-P. (2010) Nomenclator of bivalve families with a classification of bivalve families by R. Bieler, J.G. Carter and E.V. Coan. Malacologia 52, 1184.CrossRefGoogle Scholar
Butler, P.G., Wanamaker, A.D. Jr, Scourse, J.D., Richardson, C.A. and Reynolds, D.J. (2013) Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica . Palaeogeography, Palaeoclimatology, Palaeoecology 373, 141151.CrossRefGoogle Scholar
Carter, J.G., Altaba, C.R., Anderson, L.C., Araujo, R., Biakov, A.S., Bogan, A.E., Campbell, D.C., Campbell, M., Chen, J.H., Cope, J.C.W., Delvene, G., Dijkstra, H.H., Fang, Z.J., Gardner, R.N., Gavrilova, V.A., Goncharova, I.A., Harries, P.J., Hartman, J.H., Hautmann, M., Hoeh, W.R., Hylleberg, J., Jiang, B.Y., Johnston, P., Kirkendale, L., Kleemann, K., Koppka, J., Kříž, J., Machado, D., Malchus, N., Márquez-Aliaga, A., Masse, J.-P., McRoberts, C.A., Middelfart, P.U., Mitchell, S., Nevesskaja, L.A., Özer, S., Pojeta, J. Jr, Polubotko, I.V., Pons, J.M., Popov, S., Sánchez, T., Sartori, A.F., Scott, R.W., Sey II, Signorelli, J.H., Silantiev, V.V., Skelton, P.W., Steuber, T., Waterhouse, J.B., Wingard, G.L. and Yancey, T. (2011) A synoptical classification of the Bivalvia (Mollusca). University of Kansas Paleontological Institute Paleontological Contributions 4, 147.Google Scholar
Coan, E.V. and Valentich-Scott, P. (2012) Bivalve seashells of tropical West America. Santa Barbara Museum of Natural History Monographs No. 6, Studies in Biodiversity No. 4. Part 1. pp. i-vii + 596; Part 2. i-xv + 599–1258.Google Scholar
Coan, E.V., Valentich-Scott, P. and Bernard, F.R. (2000) Bivalve seashells of western North America. Santa Barbara Museum of Natural History Monographs No. 2, Studies in Biodiversity No. 2. pp. i–viii + 1–764.Google Scholar
Dinesen, G.E. and Morton, B. (2014) Review of the functional morphology, biology and perturbation impacts on the circum-boreal, habitat-forming horse mussel Modiolus modiolus (Bivalvia: Mytilidae). Marine Biology Research 10, 845870.Google Scholar
Distel, D. (2000) Phylogenetic relationships among Mytilidae (Bivalvia): 18SrRNA data suggest convergence in mytilid body plans. Molecular Phylogenetics and Evolution 15, 2533.Google Scholar
Distel, D.L., Baco, A.R., Chuang, E., Morrill, W., Cavanaugh, C. and Smith, C.R. (2000) Do mussels take wooden steps to deepsea vents. Nature 403, 725726.Google Scholar
Giribet, G. and Wheeler, W. (2002) On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebrate Biology 121, 271326.CrossRefGoogle Scholar
Harper, E.M. and Morton, B. (2004) Tube construction in the watering pot shell Brechites vaginiferus (Bivalvia; Anomalodesmata; Clavagelloidea). Acta Zoologica (Stockholm) 85, 149161.Google Scholar
Jeffreys, J.G. (1863) British Conchology, on an account of the Mollusca which now inhabit the British Isles and the surrounding seas. Vol. II. Marine Shells. Comprising the Brachiopoda, and Conchiferea from the family of Anomiidae to that of Mactridae. pp. 1–465 + 8 plates.Google Scholar
Jørgensen, C.B. (1946) Lamellibranchiata. In Thorson, G. (ed.) Reproduction and larval development of Danish marine bottom invertebrates. Meddelelser fra Kommissionen for Danmarks Fiskeri- og Havundersøgelser, (Series Plankton) 4, pp. 277311.Google Scholar
Kolotukhina, N.K., Kulikova, V.A. and Evseev, G.A. (2011) Early stages in morphogenesis of the shell of Crenella decussata (Bivalvia: Mytilidae). Korean Journal of Malacology 27, 9197.Google Scholar
Linnaeus, C. (1758) Systema naturae, 10th edn. Volume 1. L. Salvvi, Holmiae. p. i–iii + 824.Google Scholar
List, T. (1902) Faunaund Flora des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. I. Die Mytiliden. Mittheilungen aus der Zoologischen Station zu Neapel 17, 1312.Google Scholar
Mattson, S. and Warén, A. (1977) Dacrydium ockelmanni sp. n. (Bivalvia, Mytilidae) from western Norway. Sarsia 63, 16.CrossRefGoogle Scholar
Merrill, A.S. and Turner, R.D. (1963) Nest building in the bivalve genus Musculus and Lima . The Veliger 6, 5559.Google Scholar
Morton, B. (1973a) Some aspects of the biology and functional morphology of the organs of feeding and digestion of Limnoperna fortunei (Dunker) (Bivalvia: Mytilacea). Malacologia 12, 265281.Google Scholar
Morton, B. (1973b) Some aspects of the biology, population dynamics and functional morphology of Musculista senhausia Benson (Bivalvia: Mytilacea). Pacific Science 28, 1933.Google Scholar
Morton, B. (1977) The hypobranchial gland in the Bivalvia. Canadian Journal of Zoology 55, 12251234.Google Scholar
Morton, B. (ed.) (1980) The biology and some aspects of the functional morphology of Arcuatula elegans (Mytilacea: Crenellinae). In Proceedings of the First International Workshop on the Malacofauna of Hong Kong and Southern China, Hong Kong, 1977. Hong Kong: Hong Kong University Press, pp. 331345.Google Scholar
Morton, B. (1982) The mode of life and functional morphology of Gregariella coralliophaga (Gmelin 1791) (Bivalvia: Mytilacea) with a discussion on the evolution of the boring Lithophaginae and adaptive radiation in the Mytilidae. In Morton, B. and Tseng, C.K. (eds) Proceedings of the First International Marine Biological Workshop: The Marine Flora and Fauna of Hong Kong and Southern China, Hong Kong, 1980. Hong Kong: Hong Kong University Press, pp. 875895.Google Scholar
Morton, B. (1983a) The biology and functional morphology of Eufistulana mumia (Bivalvia: Gastrochaenacea). Journal of Zoology, London 200, 381404.Google Scholar
Morton, B. (1983b) Feeding and digestion in the Bivalvia. In Wilbur, K.M. and Saleuddin, A.S.M. (eds) The Mollusca. Volume 5, Part 2, Physiology. New York, NY: Academic Press, pp. 65147.Google Scholar
Morton, B. (1992) The evolution and success of the heteromyarian form in the Mytiloida. In Gosling, E.M. (ed.) The Mussel Mytilus. Amsterdam: Elsevier Science Publishers, pp. 2152.Google Scholar
Morton, B. (2003) The biology and functional morphology of Dianadema gen. nov. multangularis (Tate, 1887) (Bivalvia: Anomalodesmata: Clavagellidae). Journal of Zoology, London 259, 389401.CrossRefGoogle Scholar
Morton, B. (2006) Structure and formation of the adventitious tube of the Japanese watering pot shell Stirpulina ramosa (Bivalvia, Anomalodesmata, Clavagellidae) and a comparison with that of the Penicillidae. Invertebrate Biology 125, 233249.Google Scholar
Morton, B. (2009) The watering pot shell Dianadema minima (Bivalvia, Anomalodesmata, Clavagellidae): re-description and an interpretation of adventitious crypt formation. Invertebrate Biology 128, 252260.CrossRefGoogle Scholar
Morton, B. (2012) The biology and functional morphology of Nucula pusilla (Bivalvia: Protobranchia: Nuculidae) from Western Australia, Australia: primitive or miniature simplicity? Records of the Western Australian Museum 27, 85100.Google Scholar
Morton, B. (2013) The functional morphology of the abyssal Limopsis cristata (Arcoida: Limopsidae), with a discussion on the evolution of the more advanced bivalve foot. Acta Zoologica (Stockholm) 94, 7485.Google Scholar
Morton, B. (2015a) The evolution, adaptive radiation and classification of the Mytiloidea (Bivalvia): clues from the pericardial – posterior byssal retractor muscles complex. Molluscan Research 35, 119.Google Scholar
Morton, B. (2015b) The biology and functional morphology of the placental embryo-brooding Neolepton salmonea, a comparison with Neolepton subtrigona (Bivalvia: Cyamioidea: Neoleptonidae), and a discussion of affinities. American Malacological Bulletin 33, 121.Google Scholar
Morton, B. and Dinesen, G.E. (2011) The biology and functional morphology of Modiolarca subpicta (Bivalvia: Mytilidae: Musculinae), epizoically symbiotic with Ascidiella aspersa (Urochordata: Ascidiacea), from the Kattegat, Northern Jutland, Denmark. Journal of the Marine Biological Association of the United Kingdom 91, 16371649.Google Scholar
Morton, B. and Puljas, S. (2013) Life history strategy, with ctenidial and mantle larval brooding, of the troglodytic “living fossil” Congeria kusceri (Bivalvia: Dreissenidae) from the subterranean Dinaric Alpine karst of Croatia. Biological Journal of the Linnean Society 108, 294314.Google Scholar
Ockelmann, K.W. (1959) The zoology of East Greenland. Marine Lamellibranchiata. Meddelelser om Grønland 122, 1256.Google Scholar
Ockelmann, K.W. (1965) Developmental types in marine bivalves and their distribution along the Atlantic coast of Europe. Proceedings of the 1st European Malacological Congress 1962, pp. 2535.Google Scholar
Ockelmann, K.W. (1983) Descriptions of mytilid species and definition of the Dacrydiinae n. subfam. (Mytilacea–Bivalvia). Ophelia 22, 81123.CrossRefGoogle Scholar
Ockelmann, K.W. (1995) Ontogenetic characters of mytilaceans. Phuket Marine Biological Center Special Publications 15, 8588.Google Scholar
Ockelmann, K.W. and Dinesen, G.E. (2011) Life on wood – the carnivorous deep-sea mussel Idas argenteus (Bathymodiolinae, Mytilidae, Bivalvia). Marine Biology Research 7, 7184.Google Scholar
Owen, G., Trueman, E.R. and Yonge, C.M. (1953) The ligament in the Lamellibranchia. Nature, London 171, 16.Google Scholar
Pelseneer, P. (1911) Les lamellibranches de l'expédition du Siboga. Partie Anatomique. – Siboga-Expeditie IIIa, pp. 1–125 + plates I-XXVI.Google Scholar
Pianka, E.R. (1970) On r- and K selection. American Naturalist 104, 595597.Google Scholar
Purchon, R.D. (1957) The stomach in the Filibranchia and Pseudolamellibranchia. Proceedings of the Zoological Society of London 129, 2760.Google Scholar
Scarlato, O.A. and Starobogatov, YaI. (1979a) The system of the suborder Mytileina (Bivalvia). In Molljuski. Osnoynye rezultalty ikh izuchenija 6, 2225. Leningrad, Nauka. [In Russian]Google Scholar
Scarlato, O.A. and Starobogatov, YaI. (1979b) General evolutionary patterns and the system of the class Bivalvia. Trudy Zoologicheskogo Instituta AN SSSR 80, 538. [In Russian]Google Scholar
Semenikhina, O.Y., Kolotukhina, N.K. and Evseev, G.S. (2008) Morphology of larvae of the family Mytilidae (Bivalvia) from the north-western part of the Sea of Japan. Journal of the Marine Biological Association of the United Kingdom 88, 331339.Google Scholar
Sneli, J.-A., Schiøtte, T., Jensen, K.R., Wikander, P.B., Stokland, Ø. and Sørensen, J. (2005) The marine Mollusca of the Faroes. Annales Societatis Scientiarum Færoensis, Suppl. 42, 15176.Google Scholar
Soot-Ryen, T. (1955) A report on the family Mytilidae (Pelecypoda). Allan Hancock Pacific Expedition 20, 1175.Google Scholar
Soot-Ryen, T. (1969) Superfamily Mytilacea Rafinesque, 1815. In Moore, R.C. (ed.) Treatise on invertebrate paleontology. Part N, Mollusca 6, Bivalvia 1 (of 3). Lawrence, KS: Geological Society of America Inc. and University of Kansas Press, pp. N271N280.Google Scholar
Starobogatov, YaI. (1992) Morphological basis for phylogeny and classification of Bivalvia. Ruthenica 2, 125.Google Scholar
Stasek, C.R. (1962) Aspects of ctenidial feeding in immature bivalves. The Veliger 5, 7879.Google Scholar
Stasek, C.R. (1963) Synopsis and discussion of the association of ctenidia and labial palps in the bivalved Mollusca. The Veliger 6, 9197.Google Scholar
Steiner, G. and Hammer, S. (2000) Molecular phylogeny of the Bivalvia inferred from 18SrDNA sequences with particular reference to the Pteriomorphia. In Harper, E.M., Taylor, J.D. and Crame, J.A. (eds) The evolutionary biology of the Bivalvia. London: The Geological Society of London Special Publication No. 177, pp. 1129.Google Scholar
Tebble, N. (1966) British bivalve seashells, a handbook for identification, 2nd edn. London: Trustees of the British Museum (Natural History), pp. 1212.Google Scholar
Wang, Z.-R. and Qi, Z.-Y. (1984) Study on Chinese species of the family Mytilidae (Mollusca, Bivalvia). Studia Marina Sinica 22, 199242 + plates 1 and 2.Google Scholar
White, K.M. (1937) Mytilus . Liverpool Marine Biological Committee Memoirs on Typical British Marine Plants and Animals 31, 1117.Google Scholar
Wiborg, K.F. (1946) Undersøkelser over oskjellet (Modiola modiolus (L.)). Reports on the Norwegian Fishery and Marine Investigations 8, 185.Google Scholar
Yonge, C.M. (1947) The pallial organs in the aspidobranch Gastropoda and their evolution throughout the Mollusca. Philosophical Transactions of the Royal Society, Series B 232, 443518.Google Scholar
Yonge, C.M. (1957) Mantle fusion in the Lamellibranchia. Pubblicazione della Stazione Zoologica di Napoli 29, 151171.Google Scholar
Yonge, C.M. (1962) On the primitive significance of the byssus in the Bivalvia and its effects in evolution. Journal of the Marine Biological Association of the United Kingdom 42, 113125.Google Scholar
Yonge, C.M. (1978) Significance of the ligament in the classification of the Bivalvia. Proceedings of the Royal Society of London, Series B 202, 231248.Google Scholar
Yonge, C.M. (1982) Mantle margins with a revision of siphonal types in the Bivalvia. Journal of Molluscan Studies 48, 102103.Google Scholar
Yonge, C.M. and Thompson, T.E. (1976) Living marine molluscs. London: Collins, pp. 1288.Google Scholar