Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T18:07:17.508Z Has data issue: false hasContentIssue false

Feeding And Absorption in Cerastoderma Eduee Under Environmental Conditions in the Bay of Marennesoleron (Western France)

Published online by Cambridge University Press:  11 May 2009

M.B. Urrutia
Affiliation:
Departamento de Biología Animal y Genética, Facultad de Ciencias, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Apartado 644, E–18080 Bilbao, Spain.
J.I.P. Iglesias
Affiliation:
Departamento de Biología Animal y Genética, Facultad de Ciencias, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Apartado 644, E–18080 Bilbao, Spain.
E. Navarro
Affiliation:
Departamento de Biología Animal y Genética, Facultad de Ciencias, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Apartado 644, E–18080 Bilbao, Spain.
J. Prou
Affiliation:
IFREMER, Station de La Tremblade, UREA, BP 133, F-17390 La Tremblade, France

Extract

Physiological processes involved in energy acquisition by the filter-feeding bivalve Cerastoderma edule (L.) (Mollusca: Bivalvia) were quantified under naturally fluctuating feeding conditions imposed by tidal cycles in the Bay of Marennes-Oleron. Physiological measurements were performed during two neap and two spring tidal cycles in order to cover a wide range of seston concentrations (TPM = 15–95 mg I-1). The main effect exerted by tides on the food supply was the resuspension of bottom sediments of low organic content, leading to a strong ‘dilution’ of suspended organic matter.

Although filtration rate was found to increase with seston concentration, ingestion rate was strictly regulated by means of pseudofaeces production. Selection efficiencies for chlorophyll a (SEchl), overall organic matter (SE0), carbon (SEC) and nitrogen (SEN) were estimated and related to dietary descriptors. The following ranking was found for the efficiency with which different substrates were selected: SEchl>SEN>SEo>SEc. Absorption efficiency was found to depend on the organic content of ingested matter according to an exponential saturating function. Observed differences between carbon and nitrogen absorption efficiency were not statistically significant. Absorption rate was kept fairly constant through the wide range of seston concentrations and qualities.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayne, B.L., Hawkins, A.J.S. & Navarro, E., 1987. Feeding and digestion by the mussel Mytilus edulis L. (Bivalvia: Mollusca) in mixtures of silt and algal cells at low concentrations. Journal of Experimental Marine Biology and Ecology, 111, 122.CrossRefGoogle Scholar
Bayne, B.L., Hawkins, A.J.S., Navarro, E. & Iglesias, J.I.P., 1989. Effects of seston concentration on feeding, digestion and growth in the mussel Mytilus edulis. Marine Ecology Progress Series, 55, 4754.CrossRefGoogle Scholar
Bayne, B.L., Iglesias, J.I.P., Hawkins, A.J.S., Navarro, E., Heral, M. & Deslous-Paoli, J.-M., 1993. Feeding behaviour of the mussel, Mytilus edulis: responses to variations in quantity and organic content of the seston. Journal of the Marine Biological Association of the United Kingdom, 73, 813829.CrossRefGoogle Scholar
Berg, J.A. & Newell, R.I.E., 1986. Temporal and spatial variations in the composition of seston available to the suspension feeder Crassostrea virginica. Estuarine, Coastal and Shelf Science, 23, 375386.CrossRefGoogle Scholar
Bricelj, V.M. & Malouf, R.E., 1984. Influence of algal and suspended sediment concentrations on the feeding physiology of the hard clam Mercenaria mercenaria. Marine Biology, 84, 155165.CrossRefGoogle Scholar
Cranford, P.J. & Gordon, D.C. Jr, 1992. The influence of dilute clay suspensions on sea scallop (Placopecten magellanicus) feeding activity and tissue growth. Netherlands Journal of Sea Research, 30, 107120.CrossRefGoogle Scholar
Cranford, P.J. & Grant, J., 1990. Particle clearance and absorption of phytoplankton and detritus by the sea scallop Placopecten magellanicus (Gmelin). Journal of Experimental Marine Biology and Ecology, 137, 105121.CrossRefGoogle Scholar
Cranford, P.J. & Hargrave, B.T., 1994. In situ time-series measurement of ingestion and absorption rates of suspension-feeding bivalves: Placopecten magellanicus. Limnology and Oceanography, 39, 730738.CrossRefGoogle Scholar
Dame, R.F., 1993. The role of bivalve filter feeder material fluxes in estuarine ecosystems. In Bivalve filter feeders in estuarine and coastal ecosystems processes (ed. R.F., Dame), pp. 245269. Heidelberg: Springer-Verlag. [NATO ASI Series G: Ecological Sciences, vol. 33.]CrossRefGoogle Scholar
Deslous-Paoli, J.-M., Lannou, A.-M., Geairon, P., Bougrier, S., Raillard, O. & Heral, M., 1992. Effects of the feeding behaviour of Crassostrea gigas (bivalve molluscs) on biosedimentation of natural particulate matter. Hydrobiologia, 231, 8591.CrossRefGoogle Scholar
Fegley, S.R., Macdonald, B.A. & Jacobsen, T.R., 1992. Short-term variation in the quantity and quality of seston available to benthic suspension feeders. Estuarine, Coastal and Shelf Science, 34, 393412.CrossRefGoogle Scholar
Foster-Smith, R.L., 1975. The effect of concentration of suspension on the filtration rates and pseudofaecal production for Mytilus edulis L., Cerastoderma edule (L.) and Venerupis pullastra (Montagu). Journal of Experimental Marine Biology and Ecology, 17, 122.CrossRefGoogle Scholar
Frechette, M. & Grant, J., 1991. An in situ estimation of the effect of wind-driven resuspension on the growth of the mussel Mytilus edulis L. Journal of Experimental Marine Biology and Ecology, 148, 201213.CrossRefGoogle Scholar
Goulletquer, P., Heral, M., Deslous-Paoli, J.-M., Prou, J., Gamier, J., Razet, D. & Boromthanarat, W., 1989. Ecophysiologie et bilan énergétique de la palourde japonaise d'élevage Ruditapes philippinarum. Journal of Experimental Marine Biology and Ecology, 132, 85108.CrossRefGoogle Scholar
Grant, J. & Cranford, P.J., 1991. Carbon and nitrogen scope for growth as a function of diet in the sea scallop Placopecten magellanicus. Journal of the Marine Biological Association of the United Kingdom, 71, 437450.Google Scholar
Grant, J., Enright, C.T. & Griswold, A., 1990. Resuspension and growth of Ostrea edulis: a field experiment. Marine Biology, 104, 5159.CrossRefGoogle Scholar
Grant, J. & Thorpe, B., 1991. Effects of suspended sediment on growth, respiration and excretion of the soft-shell clam (Mya arenaria). Canadian Journal of Fisheries and Aquatic Sciences, 48, 12851292.CrossRefGoogle Scholar
Grizzle, R.E. & Morin, P.J., 1989. Effect of tidal currents, seston, and bottom sediments on growth of Mercenaria mercenaria: results of a field experiment. Marine Biology, 102, 8593.CrossRefGoogle Scholar
Ibarrola, I., Iglesias, J.I.P. & Navarro, E., 1994. Differential absorption of dietary biochemical components by cockles: enzymatic responses to variations in seston composition. La Rochelle, France: Symposium Relations Continent-zones Cotieres.Google Scholar
Iglesias, J.I.P., Navarro, E., Alvarez-Jorna, P. & Armentia, I., 1992. Feeding, particle selection and absorption in cockles Cerastoderma edule (L.) exposed to variable conditions of food concentration and quality. Journal of Experimental Marine Biology and Ecology, 162, 177198.CrossRefGoogle Scholar
Iglesias, J.I.P., Urrutia, M.B., Navarro, E., Alvarez-Jorna, P., Larretxea, X., Bougrier, S. & Heral, M., 1996. Variability of feeding processes in the cockle Cerastoderma edule (L.) in response to changes in seston concentration and composition. In press.CrossRefGoogle Scholar
Kiørboe, T., Møhlenberg, F. & Nøhr, O., 1980. Feeding, particle selection and carbon absorption in Mytilus edulis in different mixtures of algae and resuspended bottom material. Ophelia, 19, 193205.CrossRefGoogle Scholar
Kiørboe, T., Møhlenberg, F. & Nøhr, O., 1981. Effect of suspended bottom material on growth and energetics in Mytilus edulis. Marine Biology, 61, 283288.CrossRefGoogle Scholar
Lorenzen, C.J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology and Oceanography, 12, 343346.CrossRefGoogle Scholar
Lucas, M.I. & Newell, R.C., 1984. Utilization of saltmarsh grass detritus by two estuarine bivalves: carbohydrase activity of crystalline style enzymes of the oyster Crassostrea virginica (Gmelin) and the mussel Geukensia demissa (Dillwyn). Marine Biology Letters, 5, 275290.Google Scholar
Navarro, E. & Iglesias, J.I.P., 1993. Infaunal filter-feeding bivalves and the physiological response to short-term fluctuations in food availability and composition. In Bivalve filter feeders in estuarine and coastal ecosystems processes (ed. R.F., Dame), pp. 2556. Heidelberg: Springer-Verlag. [NATO ASI Series G: Ecological Sciences, vol. 33.]CrossRefGoogle Scholar
Navarro, E., Iglesias, J.I.P. & Ortega, M.M., 1992. Natural sediment as a food source for the cockle Cerastoderma edule (L.): effect of variable particle concentration on feeding, digestion and the scope for growth. Journal of Experimental Marine Biology and Ecology, 156, 6987.CrossRefGoogle Scholar
Navarro, E., Iglesias, J.I.P., Ortega, M.M. & Larretxea, X., 1994. The basis for a functional response to variable food quantity and quality in cockles Cerastoderma edule (Bivalvia, Cardiidae). Physiological Zoology, 67, 468496.Google Scholar
Navarro, E., Iglesias, J.I.P., Pérez-Camacho, A., Labarta, U. & Beiras, R., 1991. The physiological energetics of mussels (Mytilus galloprovincialis Lmk.) from different cultivation rafts in the Ria de Arosa (Galicia, NW Spain). Aquaculture, 94, 197212.CrossRefGoogle Scholar
Newell, C.R. & Shumway, S.E., 1993. Grazing of natural particulates by bivalve molluscs: a spatial and temporal perspective. In Bivalve filter feeders in estuarine and coastal ecosystems processes (ed. R.F., Dame), pp. 85148. Heidelberg: Springer-Verlag. [NATO ASI Series G: Ecological Sciences, vol. 33.]CrossRefGoogle Scholar
Newell, R.I.E. & Langdon, C.J., 1986. Digestion and absorption of refractory carbon from the plant Spartina alterniflora by the oyster Crassostrea virginica. Marine Ecology Progress Series, 34, 105115.CrossRefGoogle Scholar
Prins, T.C. & Smaal, A.C., 1989. Carbon and nitrogen budgets of the mussel Mytilus edulis L. and the cockle Cerastoderma edule (L.) in relation to food quality. Scientia Marina, 53, 477482.Google Scholar
Razet, D., Heral, M., Prou, J., Legrand, J. & Sornin, J.-M., 1990. Variations des productions de biodepots (feces et pseudofeces) de l'huitre Crassostrea gigas dans un estuaire macrotidal: Baie de Marennes-Oléron. Haliotis, 20, 143161.Google Scholar
Smaal, A.C., Verhagen, J.H.G., Coosen, J. & Haas, H. A., 1986. Interaction between seston quantity and quality and benthic suspension feeders in the Oosterschelde, The Netherlands. Ophelia, 26, 385399.CrossRefGoogle Scholar
Stenton-Dozey, J.M.E. & Brown, A.C., 1992. Clearance and retention efficiency of natural suspended particles by the rock-pool bivalve Venerupis corrugatus in relation to tidal availability. Marine Ecology Progress Series, 82, 175186.CrossRefGoogle Scholar
Stenton-Dozey, J.M.E. & Brown, A.C., 1994. Short-term changes in the energy balance of Venerupis corrugatus (Bivalvia) in relation to tidal availability of natural suspended particles. Marine Ecology Progress Series, 103, 5764.CrossRefGoogle Scholar
Stuart, V., 1982. Absorbed ration, respiratory costs and resultant scope for growth in the mussel Aulacomya ater (Molina) fed on a diet of kelp detritus of different ages. Marine Biology Letters, 3, 289306.Google Scholar
Urban, E.R. Jr & Kirchman, D.L., 1992. Effect of kaolinite clay on the feeding activity of the eastern oyster Crassostrea virginica (Gmelin). Journal of Experimental Marine Biology and Ecology, 160, 4760.CrossRefGoogle Scholar
Villiers, C.J. de & Hodgson, A.N., 1993. The filtration and feeding physiology of the infaunal estuarine bivalve Solen cylindraceus Hanley 1843. Journal of Experimental Marine Biology and Ecology, 167, 127142.CrossRefGoogle Scholar