Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T14:57:31.008Z Has data issue: false hasContentIssue false

Experiments with Radioactive Strontium (90Sr) on Certain Molluscs and Polychaetes

Published online by Cambridge University Press:  11 May 2009

Vera Fretter
Affiliation:
Department of Zoology, Birkbeck College, University of London

Extract

If Arion hortensis be fed on a diet which contains 90Sr, autoradiographs show that the isotope istaken up by the digestive and lime cells of the digestive gland. From the former it passes to th haemocoel; in the lime cells it is concentrated around the calcium spherules. Some of the tracer enters the body through the wall of the intestine. Calcium stores which surround blood vessels and calcium cells in the mantle also concentrate the tracer.

In Aplysia.punctata 90Sr from the surrounding water passes through the surface of the body, and especially the gill; in Acanthodoris pilosa ions which enter the tissues from the sea water accumulate around the numerous calcium concretions in the mantle. These marine molluscs obtain cations directly from the water as well as by way of the food.

There is a slow uptake of strontium ions by the ctenidia of Mytilus edulis, though, even in filtered sea water, the gut is the more important area for their ingress to the body. It is possible that they enter with the mucous feedingsheets. They pass readily into the cells of the digestive gland. Some of the isotope taken in with the food is absorbed by the wall of the intestine; this also occurs in Patella vulgata, in which the intestine provides a much larger area, and in Lepidochitona cinereus.

Mytilus placed in filtered sea water which is activated with 90Sr, so increasing the strontium content by 007%, show the tracer localized for excretion within 10 hr. Ions are aggregated in the pericardial glands, not in the kidney.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1953

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barr, R. A. 1928. Some notes on the mucous and skin glands of Avion ater. Quart. Journ. Micr. Sci., Vol. 71, pp. 503–26.Google Scholar
Bethe, A. 1934. Die Salz- und Wasserdurchlässigkeit der Körperoberflächen verschiedener Seetiere in ihrem gegenseitigen Verhältnis. Pflüg. Arch. ges. Physiol., Bd. 234, pp. 629–44.CrossRefGoogle Scholar
Bevelander, G. 1952. Calcification in molluscs III. Intake and deposition of Ca45 and P32 in relation to shell formation. Biol. Bull. Woods Hole, Vol. 102, pp. 915.CrossRefGoogle Scholar
Bevelander, G. & Benzer, P. 1948. Calcification in marine molluscs. Biol. Bull. Woods Hole, Vol. 94, pp. 176–83.CrossRefGoogle Scholar
Chatin, A. & Muntz, A. 1895. Analyse des Coquilles d'hzitres. C.R. Acad. Sci., Paris, T. 120, pp. 531–4.Google Scholar
Cuénot, L. 1899. L'excrétion chez les Mollusques. Arch. Biol. Paris, T. 16 PP. 4995.Google Scholar
Erf, L. A. & Pecher, C. 1940. Secretion of Sr* in milk of two cows following intravenous administration. Proc. Soc. Exp. Biol., N. Y., Vol. 45, pp. 762–4.CrossRefGoogle Scholar
Fordham, M. G. C. 1925. Aphrodite aculeata. L.M.B.C. Memoir, No. 27.Google Scholar
Fox, D. L. & Coe, W. R. 1943. Biology of the California sea-mussel (Mytilus californianus). II. Nutrition, metabolism and calcium deposition. J. Exp. Zool., Vol. 93, pp. 205–49.CrossRefGoogle Scholar
Fox, D. L.Sverdrup, H. U. & Cunningham, J. P. 1937. The rate of water propulsion by the Califrnia mussel. Biol. Bull. Woods Hole, Vol. 72, pp. 417–38.CrossRefGoogle Scholar
Fretter, V. 1952. Experiments with P33 and I131 on species of Helix, Arion and Agriolimax. Quart. Journ. Micr. Sci., Vol. 93, pp. 133–46.Google Scholar
Gabe, M. & Prenant, M. 1949. Contribution à l'étude cytologique et histochimique du tube digestif des Polyplacophores. Arch. Biol. Paris, T. 60, pp. 3977.Google ScholarPubMed
Galtsoff, P. S. 1934. The biochemistry of the invertebrates of the sea. Ecol. Monogr., Vol. 4, pp. 481–90.CrossRefGoogle Scholar
Graham, A. 1932. On the structure and function of the alimentary canal of the limpet. Trans. Roy. Soc. Edinb., Vol. 57, pp. 287308.CrossRefGoogle Scholar
Korringa, P. 1952. Recent advances in oyster biology. Quart. Rev. BioL, Vol. 27, pp. 266308.CrossRefGoogle ScholarPubMed
Liebman, E. 1946. On trephocytes and trephocytosis; a study on the role of leucocytes in nutrition and growth. Growth, Vol. 10, pp. 291–29.Google Scholar
Mccance, R. A. & Masters, M. 1937. The chemical composition and the acid base balance of Archidoris britannica. Journ. Mar. Biol. Assoc, Vol. 22, pp. 273–80.CrossRefGoogle Scholar
Mccance, R. A. & Widdowson, E. M. 1939. The fate of Sr after intravenous administration to normal persons. Biochem. Journ., Vol. 33, pp. 1822–5.CrossRefGoogle Scholar
Macginitie, G. E. 1945. The size of the mesh openings in mucous feeding nets of marine animals. Biol. Bull. Woods Hole, Vol. 88, pp. 107–11.CrossRefGoogle Scholar
Manigault, P. 1939. Récherches sur le calcaire chez les Mollusques. Ann. Inst. Océanogr. Monaco, T. 18, pp33426.Google Scholar
Millott, N. 1937. The structure and function of the wandering cells in the wall of the alimentary canal of Nudibranchiate Mollusca. J. Exp. Biol., Vol. 14, pp. 405–12.CrossRefGoogle Scholar
Orton, J. H. 1925. The conditions for calcareous metabolism in oysters and other marine animals. Nature, Lond., Vol. 116, p. 13.CrossRefGoogle Scholar
Orton, J. H. 1935. Laws of shell growth in English native oysters. Nature, Lond., Vol. 135, p. 340.CrossRefGoogle Scholar
Pecher, C. 1941a. Ca* and Sr* metabolism in pregnant mice. Proc. Soc. Exp. Biol, N.Y., Vol. 46, pp. 91–4.CrossRefGoogle Scholar
Pecher, C. 1941b. Biological investigations with Ca* and Sr*. Proc. Soc. Exp. Biol., N. Y., Vol. 46, pp. 8691.CrossRefGoogle Scholar
Posin, D. Q. 1942. Investigations with radioactive strontium, phosphorus and iron. Proc. Mont. Acad. Sci., Vol. 3, pp. 1015.Google Scholar
Prenant, M. 1924. Contributions à l'étude cytologique du Calcaire. Biol. Bull. Woods Hole, Vol. 58,, pp. 331–80.Google Scholar
Robertson, J.D. 1941. The function and metabolism of calcium in the Invertebrata. Biol. Rev., Vol. 16, pp. 106–33.CrossRefGoogle Scholar
Romieu, M. 1923. Recherches histologique sur le sang et sur le corps cardiaque des annelids polychetes. Arch. Morph. Gen. Exp., T. 17, pp. 1339.Google Scholar
Ronkin, R. R. 1950. The uptake of radioactive phosphate by the excised gill of the mussel, Mytilus edulis. J. Cell. Comp. Physiol., Vol. 35, pp. 241–60.CrossRefGoogle ScholarPubMed
Spooner, G. M. 1949. Observations on the absorption of radioactive strontium and yttrium by marine algae. Journ. Mar. Biol. Assoc, Vol. 28, pp. 587625.CrossRefGoogle Scholar
Swann, E. F. 1950. The calcareous tube secreting glands of the serpulid polychaetes. Journ. Morph., Vol. 86, pp. 285314.CrossRefGoogle Scholar
Takatsuki, S. 1934. On the nature and function of the amoebocytes of Ostrea edulis. Quart. Journ. Micr. Sci., Vol. 76, pp. 379431.Google Scholar
Trueman, E. R. 1942. The structure and deposition of the shell of Tellina tenuis. Journ. Roy. Micr. Soc., Vol. 63, pp. 6991.CrossRefGoogle Scholar
Yonge, C. M. 1926a. Structure and physiology of the organs of feeding and digestion in Ostrea edulis. Journ. Mar. Biol. Assoc, Vol. 14, pp. 295386.CrossRefGoogle Scholar
Yonge, C. M. 1926b. The digestive diverticula of the lamellibranchs. Trans. Roy. Soc Edinb., Vol. 54, pp. 703–18.CrossRefGoogle Scholar
Yonge, C. M. 1928. The absorption of glucose by Ostrea edulis. Journ. Mar. Biol. Assoc, Vol. 15, pp. 643–53.CrossRefGoogle Scholar