Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T22:15:48.208Z Has data issue: false hasContentIssue false

Evolutionary relationships of the Tehuelche scallop Aequipecten tehuelchus (Bivalvia: Pectinidae) from the south-western Atlantic Ocean

Published online by Cambridge University Press:  15 April 2018

Berenice Trovant*
Affiliation:
Instituto de Diversidad y Evolución Austral (CCT CONICET – CENPAT), Bv. Almirante Brown 2915, Puerto Madryn, Chubut, Argentina
Luciano E. Real
Affiliation:
Instituto de Diversidad y Evolución Austral (CCT CONICET – CENPAT), Bv. Almirante Brown 2915, Puerto Madryn, Chubut, Argentina
Ana M. Parma
Affiliation:
Centro para el Estudio de Sistemas Marinos (CCT CONICET – CENPAT), Bv. Almirante Brown 2915, Puerto Madryn, Chubut, Argentina
J.M. Orensanz
Affiliation:
Centro para el Estudio de Sistemas Marinos (CCT CONICET – CENPAT), Bv. Almirante Brown 2915, Puerto Madryn, Chubut, Argentina
Néstor G. Basso
Affiliation:
Instituto de Diversidad y Evolución Austral (CCT CONICET – CENPAT), Bv. Almirante Brown 2915, Puerto Madryn, Chubut, Argentina
*
Correspondence should be addressed to: Berenice Trovant, Instituto de Diversidad y Evolución Austral (CCT CONICET – CENPAT), Bv. Almirante Brown 2915, Puerto Madryn, Chubut, Argentina email: [email protected]

Abstract

This study addresses aspects of the phylogenetic relationships of the commercial Tehuelche scallop, Aequipecten tehuelchus s.l. (Bivalvia: Pectinidae), from southern South America using molecular techniques. The Tehuelche scallop presents two different putative subspecies, A. t. tehuelchus and A. t. madrynensis, and a potentially related sympatric species, Flexopecten felipponei. The Tehuelche scallop is a very important component of ecosystems and is the target of artisanal fisheries in the northern Patagonian gulfs of Argentina. Despite its importance, the systematic relationships of these taxa have not been fully addressed. The main goal of this study is to place the Tehuelche scallop within a partial phylogenetic framework of the family Pectinidae. Scallops were sampled at 10 localities distributed along the south-western Atlantic Ocean. Phylogenetic reconstructions were carried out from two mitochondrial (12S rRNA and 16S rRNA) and two nuclear markers (28S rRNA and H3) using Bayesian, maximum likelihood and maximum parsimony analyses. Our phylogenetic analysis indicates that the two putative subspecies of the Tehuelche scallop together with F. felipponei form a monophyletic clade, without differentiating at the specific level. Observed differences would be the result of phenotypic plasticity, probably caused by environmental factors. However, further analysis using genes with faster evolution rate are needed to corroborate it. Our phylogenetic analysis resolved to Aequipecten as polyphyletic. The Tehuelche scallop has a basal position within the Argopecten group and we recommend that it should be transferred to this genus. The relationship between the hypotheses about the origin of the Tehuelche scallop implicit in the literature and our results are discussed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alejandrino, A., Puslednik, L. and Serb, J.M. (2011) Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae). BMC Evolutionary Biology 11, 164.Google Scholar
Amoroso, R., Parma, A.M., Orensanz, J.M. and Gagliardini, A. (2011) Zooming the macroscope: medium-resolution remote sensing as a framework for the assessment of a small-scale fishery. ICES Journal of Marine Science 68, 696706.Google Scholar
Barucca, M., Olmo, E., Schiaparelli, S. and Canapa, A. (2004) Molecular phylogeny of the family Pectinidae (Mollusca: Bivalvia) based on mitochondrial 16S and 12S rRNA genes. Molecular Phylogenetics and Evolution 31, 8995.Google Scholar
Canapa, A., Barucca, M., Marinelli, A. and Olmo, E. (2000) Molecular data from the 16S rRNA gene for the phylogeny of Pectinidae (Mollusca: Bivalvia). Journal of Molecular Evolution 50, 9397.10.1007/s002399910010Google Scholar
Castellanos, Z.J.A. (1970) Catálogo de los moluscos marinos bonaerenses. Anales de la Comisión de Investigaciones Científicas de Buenos Aires 8, 1365.Google Scholar
Castellanos, Z.J.A. (1971) Los Chlamys más comunes del Mar Argentino. Neotrópica 17, 5556.Google Scholar
Colgan, D., McLauchlan, A., Wilson, G., Livingston, S., Edgecombe, G., Macaranas, J., Cassis, G. and Gray, M. (1998) Histone H3 and U2 snnRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46, 419437.Google Scholar
Darriba, D., Taboada, G.L., Doallo, R. and Posada, D. (2012) Jmodeltest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.Google Scholar
Del Río, C. (1992) Middle Miocene bivalves of the Puerto Madryn Formation, Valdes Peninsule, Chubut Province, Argentina (Nuculidae – Pectinidae). Palaeontographica 225, 158.Google Scholar
Domínguez-Contreras, J.F., Munguía-Vega, A., Getino-Mamet, L.N., Soria, G. and Parma, A. (2017) Characterisation of 30 microsatellite loci for the Tehuelche scallop, Aequipecten tehuelchus (d'Orbigny, 1842) and their use for estimating demographic parameters relevant to fisheries management. Molluscan Research 17.Google Scholar
Drummond, A.J., Suchard, M.A., Xie, D. and Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 19691973.Google Scholar
Feng, Y., Li, Q., Kong, L. and Zheng, X. (2011) DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Molecular Biology Reports 38, 291299.Google Scholar
Goloboff, P.A., Farris, J.A. and Nixon, K.C. (2008) TNT, a free program for phylogenetic analysis. Cladistics 24, 774786.Google Scholar
Hasegawa, M., Kishino, H. and Yano, T. (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160174.Google Scholar
Hertlein, L.G. (1969) Family Pectinidae Rafinesque, 1815. In Moore, R.C. and Teichert, C. (eds) Treatise on invertebrate paleontology. Part N, Mollusca 6, Bivalvia. Lawrence, KA: Geological Society of America and University of Kansas Press, pp. N348N373.Google Scholar
Huber, M. (2010) Compendium of bivalves. A full-color guide to 3300 of the world's marine bivalves. A status on Bivalvia after 250 years of research. Hackenheim: ConchBooks.Google Scholar
Kass, R.E. and Raftery, A.E. (1995) Bayes factors. Journal of the American Statistical Association 90, 773795.Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.Google Scholar
Krapivka, S., Toro, J.E., Alcapán, A.C., Astorga, M., Presa, P., Pérez, M. and Guiñez, R. (2007) Shell-shape variation along the latitudinal range of the Chilean blue mussel Mytilus chilensis (Hupe 1854). Aquaculture Research 38, 17701777.Google Scholar
Krause, M.K. and von Brand, E. (2016) Scallop genetics and genomics. In Shumway, S.E. and Parsons, G.J. (eds) Biology, ecology, aquaculture and fisheries. Amsterdam: Elsevier, pp. 371424.Google Scholar
Leyva-Valencia, I., Álvarez-Castañeda, S. T., Lluch-Cota, D. B., González-Pelez, S., Pérez-Valencia, S., Vadopalas, B., Ramírez-Pérez, S. and Cruz-Hernández, P. (2012) Shell shape differences between two Panopea species and phenotypic variation among P. globosa at different sites using two geometric morphometrics approaches. Malacologia 55, 113.Google Scholar
Malkowsky, Y. and Klussmann-Kolb, A. (2012) Phylogeny and spatio-temporal distribution of European Pectinidae (Mollusca: Bivalvia). Systematics and Biodiversity 10, 233242.Google Scholar
Melatunan, S., Calosi, P., Rundle, S.D., Widdicombe, S. and Moody, A.J. (2013) Effects of ocean acidification and elevated temperature on shell plasticity and its energetic basis in an intertidal gastropod. Marine Ecology Progress Series 472, 155168.Google Scholar
Morariu, V.I., Srinivasan, B.V., Raykar, V.C., Duraiswami, R. and Davis, L.S. (2008) Automatic online tuning for fast Gaussian summation. In Koller, D., Schuurmans, D., Bengio, Y. and Bottou, L. (eds) Advances in neural information processing systems (NIPS). Cambridge, MA: MIT Press.Google Scholar
Newton, M.A. and Raftery, A.E. (1994) Approximate Bayesian inference by the weighted likelihood bootstrap. Journal of the Royal Statistical Society Series B – Methodological 56, 348.Google Scholar
Nixon, K.C. and Wheeler, Q.D. (1990) An amplification of the phylogenetic species concept. Cladistics 621, 1223.Google Scholar
Orensanz, J.M. (1986) Size, environment, and density: regulation of a scallop stock and its management implications. Canadian Journal of Fisheries and Aquatic Sciences 92, 195227.Google Scholar
Orensanz, J.M., Pascual, M. and Fernandez, M. (1991) Argentina. In Shumway, S. (ed.) Scallops: biology, ecology and aquaculture. Amsterdam: Elsevier, pp. 981999.Google Scholar
Palumbi, S., Martin, A., Romano, S., McMillian, W.O., Stice, L. and Grabowski, G. (1991) The simple fool's guide to PCR. Honolulu: University of Hawaii Press.Google Scholar
Pujolar, J.M., Marceta, T., Saavedra, C., Bressan, M. and Zane, L. (2010) Inferring the demographic history of the Adriatic flexopecten complex. Molecular Phylogenetics and Evolution 57, 942947.Google Scholar
Puslednik, L. and Serb, J.M. (2008) Molecular phylogenetics of the Pectinidae (Mollusca: Bivalvia) and effect of increased taxon sampling and outgroup selection on tree topology. Molecular Phylogenetics and Evolution 48, 11781188.Google Scholar
Raftery, A.E., Newton, M.A., Satagopan, J.M. and Krivitsky, P.N. (2007) Estimating the integrated likelihood via posterior simulation using the harmonic mean identity. In Bernardo, J.M. et al. (eds) Bayesian statistics. Oxford: Oxford University Press, pp. 145.Google Scholar
Rambaut, A., Suchard, M.A., Xie, D. and Drummond, A.J. (2014) Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer.Google Scholar
Real, L.E., Julio, N., Gardenal, N.C. and Ciocco, N.F. (2004) Genetic variability of Tehuelche scallop, Aequipecten tehuelchus, populations from the Patagonian coasts (Argentina). Journal of the Marine Biological Association of the United Kingdom 84, 235238.Google Scholar
Saavedra, C. and Peña, J.B. (2006) Phylogenetics of American scallops (Bivalvia: Pectinidae) based on partial 16S and 12S ribosomal RNA gene sequences. Marine Biology 150, 111119.Google Scholar
Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular cloning: a laboratory manual, 2nd edition. New York, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Serb, J.M. (2016) Reconciling morphological and molecular approaches in developing a phylogeny for the Pectinidae (Mollusca: Bivalvia). In Shumway, S. and Parson, G. (eds) Scallops: biology, ecology, aquaculture, and fisheries. Amsterdam: Elsevier, pp. 2048.Google Scholar
Silvestro, D. and Michalak, I. (2012) RaxMLGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution 12, 335337.Google Scholar
Soria, G., Orensanz, J.M., Morsán, E.M., Parma, A.M. and Amoroso, R.O. (2016) Scallops biology, fisheries and management in Argentina. In Shumway, S. and Parsons, G.J. (eds) Scallops: biology, ecology and aquaculture. Amsterdam: Elsevier, pp. 10191046.Google Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 26882690.10.1093/bioinformatics/btl446Google Scholar
Stanley, S. (1970) Relation of shell form to life habits in the Bivalvia (Mollusca). Memoirs of the Geological Society of America, Vol. 125. Boulder, CO: Geological Society of America.Google Scholar
Stanley, S. (1972) Functional morphology and evolution of bissally attached bivalve mollusks. Journal of Paleontology 46, 165211.Google Scholar
Swofford, D.L. (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), 4th edition. Sunderland, MA: Sinauer Associates.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.Google Scholar
Tavaré, S. (1985) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences (American Mathematical Society) 17, 5786.Google Scholar
Thiele, J. (1935) Handbuch der systematichen weichtierkunde. Jena: Gustav Fischer.Google Scholar
Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.Google Scholar
Tonini, M.H. and Palma, E.D. (2017) Tidal dynamics on the North Patagonian Argentinean Gulfs. Estuarine, Coastal and Shelf Science 189, 115130.Google Scholar
Vermeij, G.J. (1973) Morphological patterns in high-intertidal gastropods: adaptive strategies and their limitations. Marine Biology 20, 319346.Google Scholar
Via, S. (1994) The evolution of phenotypic plasticity: what do we really know? In Real, L.A. (ed.) Ecological genetics. Princeton, NJ: Princeton University Press, pp. 3557.Google Scholar
Waller, T.R. (1986) A new genus and species of scallop (Bivalvia: Pectinidae) from off Somalia, and the definition of a new tribe Decatopectinini. The Nautilus 100, 3946.Google Scholar
Waller, T.R. (1991) Evolutionary relationships among commercial scallops (Mollusca: Bivalvia: Pectinidae). In Shumway, S.E. (ed.) Scallops: biology, ecology and aquaculture. Amsterdam: Elsevier, pp. 173.Google Scholar
Waller, T.R. (2006) New phylogenies of the Pectinidae (Mollusca: Bivalvia): reconciling morphological and molecular approaches. In Shumway, S.E. and Parsons, G.J. (eds) Scallops: biology, ecology and aquaculture. Amsterdam: Elsevier, pp. 144.Google Scholar
Xia, X. (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30, 17201728.Google Scholar
Xia, X. and Lemey, P. (2009) Assessing substitution saturation with DAMBE. In Lemey, P., Salemi, M. and Vandamme, A.-M. (eds) The phylogenetic handbook: a practical approach to DNA and protein phylogeny. New York, NY: Cambridge University Press, pp. 615630.Google Scholar
Supplementary material: File

Trovant et al. supplementary material

Trovant et al. supplementary material 1

Download Trovant et al. supplementary material(File)
File 3.3 MB