Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T17:40:14.750Z Has data issue: false hasContentIssue false

Escape reactions of zooplankton: Effects of light and turbulence

Published online by Cambridge University Press:  11 May 2009

K. V. Singarajah
Affiliation:
Department of Zoology, University College of Swansea, Wales

Extract

Hensen (,1887) drew attention to the possibility of using a pump for quantitative sampling of surface plankton and, since then, a hose-pump method has been widely used for such sampling at desired depths by Juday (1916), Lohmann (1898,1901), and Thorson (1946). A comparative study by Gibbons & Fraser (1937) suggested that such a pump had outstanding advantages over the vertical net, in quantitative work. However, Korringa (1941), working on oyster larvae, suggested that some plankton animals may be able to escape by swimming against the currents which approach the mouth of the suction hose. Brook & Woodward (1956) noticed an apparently rheotactic response shown by plankton organisms in evading water currents.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barkley, R. A., 1964. The theoretical effectiveness of towed-net samples as related to sampler size and to swimming speed of organisms. Journal du Conseil, 29, 146–7.CrossRefGoogle Scholar
Bary, B. M., De Stefano, J. G. & Van Den, Kerkhof J., 1958. A closing, high speed plankton catcher for use in vertical and horizontal towing. Pacific Science, 12, 4659.Google Scholar
Broch, F., 1930. Das Verhalten der ersten Antennen von Brachyuren und Anomuren in Bezug auf das umgebende Medium. Zeitschrift für vergleichende Physiology, 11, 774–5.CrossRefGoogle Scholar
Brook, A. J. & Woodward, W. B., 1956. Some observations on the effects of water inflow on the plankton of small lakes. Journal of Animal Ecology, 25, 2235.CrossRefGoogle Scholar
Clarke, G. L., 1934. Factors affecting the vertical distribution of copepods. Ecological Monographs, 4, 530–40.CrossRefGoogle Scholar
Fage, L., 1933. Pêches planctoniques á la lumière effectuées à Banyuls-sur-mer et à Concarneau. III Crustacea. Archives de zoologie experimentale et générate, 76, 105248.Google Scholar
Fleminger, A. & Clutter, R. I., 1965. Avoidance of towed nets by zooplankton. Limnology and Oceanography, 10, 96104.CrossRefGoogle Scholar
Foxton, G. E. H., 1940. The reactions of certain mysids to stimulation by light and gravity. Journal of the Marine Biological Association of the United Kingdom, 24, 8997.CrossRefGoogle Scholar
Fraenkel, G. S., 1931. Die Mechanik der Orientierung der Tiere im Raum. Biological Reviews, 6, 3687.CrossRefGoogle Scholar
Franz, V., 1910. Phototaxis und Wanderung. Nach Versuchen auf Jungfischen und Fischlarven. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 3, 306–34.CrossRefGoogle Scholar
Gibbons, S. G. & Fraser, J. H., 1937. The centrifugal pump and suction hose as a method of collecting plankton samples. Journal du Conseil, 12, 155–71.CrossRefGoogle Scholar
Hadley, P. B., 1906. The relation of optical stimuli to rheotaxis in the American lobsters, Homarus americanus. American Journal of Physiology, 17, 326–43.CrossRefGoogle Scholar
Hansen, V. Kr. & Anderson, A. P., 1962. Sampling the smaller zooplankton. Rapport et procésverbaux de rèunions Conseil permanent international pour l'exploration de la Mer, 153, 3947.Google Scholar
Hardy, A. C. & Bainbridge, R., 1951. Effect of pressure on the behaviour of decapod larvae (Crustacea). Nature, London, 167, 327–8.CrossRefGoogle ScholarPubMed
Hensen, V., 1887. Über die Bestimmung des Plankton. Bericht der Kommission Wissenschaftliche Meeresuntersuchungen, 12B, 16Jahrgang.Google Scholar
Herter, K., 1927. Taxien und Tropismen der Tiere. Tabulae biologicae, 4, 348–81.Google Scholar
Juday, C., 1916. Limnological apparatus. Transactions of the Wisconsin Academy of Sciences, Arts and Letters, 18, 2.Google Scholar
Knight-Jones, E. W. & Qasim, S. Z., 1955. Responses of some marine plankton animals to changes in hydrostatic pressure. Nature, London, 175, 941.CrossRefGoogle ScholarPubMed
Korringa, P., 1941. Experiments and observations on swarming, pelagic life and setting in the European flat oyster, Ostrea edulis. Archives néerlandaises de Zoologie, 5, 1249.Google Scholar
Loeb, J., 1918. Forced movements, tropisms and animal conduct. 209 pp. Philadelphia: Lippincott Company.Google Scholar
Lohmann, H., 1898. Untersuchungen zur Festellung des volstandigen Gehaltes des Meeres an Plankton. Wissenschaftliche Meeresuntersuchungen der Kommission zur wissenschaftliche Untersuchung der deutschen Meere, Abt. Kiel, 5 (2), 4767.Google Scholar
Lohmann, H., 1901. Über das Fischen mit Netzen aus Mullergaze. Wissenshaftliche Meeresuntersuchungen der Komission zur wissenschaftliche Untersuchung der deutschen Meere, Abt. Kiel, 5 (2), 4767.Google Scholar
Lowe, E., 1935. On the anatomy of marine copepod, Calanus finmarchicus (Gunnerus). Transactions of the Royal Society of Edinburgh, 58, 561603.Google Scholar
Lowndes, A. G., 1935. The swimming and feeding of certain calanoid copepods. Proceedings of the Zoological Society of London, 1935 (3), 687715.CrossRefGoogle Scholar
Mackintosh, N. A., 1934. Distribution of the macroplankton in the Atlantic sector of the Antarctic. ‘Discovery’ Reports, 9, 65160.Google Scholar
Marshall, S. M. & Orr, A. P., 1955. The biology of a marine copepod Calanus finmarchicus (Gunnerus). 188 pp. London: Oliver and Boyd.Google Scholar
Pardi, L. & Papi, F., 1961. Kinetic and tactic responses. In: The physiology of Crustacea, ed. Waterman, T. H., 2, 365–99. New York and London: Academic Press.Google Scholar
Rice, A. L., 1964. Observations on the effects of changes of hydrostatic pressure on the behaviour of some marine animals. Journal of the Marine Biological Association of the United Kingdom, 44, 163–75.CrossRefGoogle Scholar
Rose, M., 1925. Contribution à 1'étude de la biologie due plankton. Archives de zoologie expérimentale et générale, 64, 387542.Google Scholar
Sars, G. O., 1911. An account of the Crustacea of Norway. V. Copepoda – Harpacticoida. Bergen: Bergen Museum.Google Scholar
Singarajah, K. V., 1969. Escape reactions of zooplankton: Avoidance of a pursuing siphon tube. Journal of Experimental Marine Biology and Ecology, 3, 171–8.CrossRefGoogle Scholar
Spooner, G. M., 1933. Observations on the reaction of marine plankton to light. Journal of the Marine Biological Association of the United Kingdom, 19, 385438.CrossRefGoogle Scholar
Storch, O., 1929. Die Schwimmbewegung der copepoden, auf Grund von MikroZeitlupenaufnahmen analysiert. Verhandlungen der Deutschen zoologischen Gellschaft, 33, 118–29.Google Scholar
Tattersall, W. M. & Tattersall, O. S., 1951. The British Mysidacea. 460 pp. London: Ray Society.Google Scholar
Thorson, G., 1946. Reproduction and larval development of Danish marine bottom invertebrates, with special reference to the planktonic larvae in the Sound (øresund). Meddelelser fra Kommissionen for Havundersogelser Ser. Plankton, 4 (1), 1523.Google Scholar
Winsor, C. P. & Clarke, G. L., 1940. A statistical study of variation in the catch of plankton nets. Journal of Marine Research, 3, 134.Google Scholar
Verworm, M., 1899. General physiology. 615 pp. New York: Macmillan.Google Scholar
Zimmer, C., 1927. Isopoda. In: Handbuch der zoologie, eds W., Kukenthal and T., Krumbach, 3 (1), 697766. Berlin: De Gruyter.Google Scholar