Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T14:03:52.993Z Has data issue: false hasContentIssue false

Environmental Tolerances of Three Species of The Harpacticoid Copepod Genus Tigriopus

Published online by Cambridge University Press:  11 May 2009

J. Davenport
Affiliation:
University Marine Biological Station, Millport, Isle of Cumbrae, Scotland, KA28 OEG
P.R.O. Barnett
Affiliation:
University Marine Biological Station, Millport, Isle of Cumbrae, Scotland, KA28 OEG
R.J. McAllen
Affiliation:
University Marine Biological Station, Millport, Isle of Cumbrae, Scotland, KA28 OEG

Extract

The harpacticoid copepod genus Tigriopus is characteristic of shallow upper shore rock pools in both hemispheres. Tigriopus are necessarily physiologically tolerant as the pools feature extreme physicochemical conditions; their lower limit on the shore is apparently set by competition/predation. There are several species, differentiated by relatively minor morphological distinctions; speciation appears to be favoured by restricted gene flow between populations, even over short distances. This paper briefly reviews the literature concerned with the taxonomy, physiology and ecology of the genus, and compares environmental conditions and salinity/thermal tolerance data for three species: T. brevicornis from Scotland, T. fulvus from Madeira, and a previously undescribed population of the Southern Ocean ‘T. angulatus’ group from subantarctic South Georgia. Particularly interesting was a low upper lethal temperature in ‘T. angulatus’ (21·9°C) that probably restricts the species to relatively large pools that buffer environmental thermal extremes. Unlike the other species, T. fulvus cannot withstand freezing conditions. Evidence is presented to show that the South Georgian Tigriopus differs slightly, but significantly, in its morphology from two sibling species that inhabit the subantarctic Kerguelen and Crozet Islands but which cannot interbreed. If the South Georgian copepods are indeed a separate species and do not occur elsewhere (e.g. the Falklands), this indicates rapid speciation within the genus; the coasts of South Georgia were covered by an icecap until 10,000–14,000 years ago and no rock pool habitats were then available. It is suggested that Tigriopus may have reached South Georgia by rafting within Enteromorpha tubes.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Battaglia, B., 1982. Genetic variation and speciation events in marine copepods. In Mechanisms of speciation (ed. C., Barigozzi), pp. 377392. New York: Alan R. Liss.Google Scholar
Battaglia, B., Bisol, P.M., Fava, G., Rodino, E. & Varotto, V., 1985. Genetic variability and geographic differentiation in some benthic invertebrates from the Kerguelen region. In Marine biology of polar regions and effects of stress on marine organisms (ed. J.S., Gray and M.E., Christiansen), pp. 299311. New York: John Wiley & Sons.Google Scholar
Bozic, B., 1960. Le genre Tigriopus Norman (Copépodes Harpacticoïdes) et ses formes Européenes: recherches morphologiques et expérimentales. Archives de Zoologie Expérimentale et Générate, 98, 167269.Google Scholar
Bozic, B., 1975. Détection actométrique d'un facteur d'interattraction chez Tigriopus (Crustacés, Copépodes, Harpacticoïdes). Bulletin de la Société Zoologique de France, 100, 305311.Google Scholar
Bradford, J.M., 1967. The genus Tigriopus Norman (Copepoda Harpacticoida) in New Zealand with a description of a new species. Transactions of the Royal Society of New Zealand, Zoology, 10, 5159.Google Scholar
Brady, G.S., 1875. Note on Entomostracea from Kerguelen's Land and the South Indian Ocean. Annals and Magazine of Natural History, 16, 162163.CrossRefGoogle Scholar
Brehm, V., 1935. Mitteilungen von den Forschungsreisen Prof. Rahms. Mitteilungen III. Copepoden aus Cajon de Plomo in der Kordillere von Santiago, 3330 m. Zoologischer Anzeiger, 112, 7379.Google Scholar
Brown, A.F., 1991. Outbreeding depression as a cost of dispersal in the harpacticoid copepod, Tigriopus californicus. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 181, 123126.CrossRefGoogle ScholarPubMed
Burton, R.S., 1985. Mating system of the intertidal copepod Tigriopus californicus. Marine Biology, 86, 247252.CrossRefGoogle Scholar
Burton, R.S., 1986. Evolutionary consequences of restricted gene flow among natural populations of the copepod Tigriopus californicus. Bulletin of Marine Science, 39, 526535.Google Scholar
Burton, R.S., 1990. Hybrid breakdown in development time in the copepod Tigriopus californicus. Evolution, 44, 18141822.CrossRefGoogle Scholar
Burton, R.S., 1991. Regulation of proline synthesis during osmotic stress in the copepod Tigriopus californicus. Journal of Experimental Zoology, 259, 166173.CrossRefGoogle Scholar
Burton, R.S. & Feldman, M.W., 1982. Changes in free amino concentrations during osmotic response in the intertidal copepod Tigriopus californicus. Comparative Biochemistry and Physiology, 73A, 441445.CrossRefGoogle Scholar
Burton, R.S. & Feldman, M.W., 1983. Physiological effects of an allozyme polymorphism: glutamate-pyruvate transaminase and response to hyperosmotic stress in the copepod Tigriopus californicus. Biochemical Genetics, 21, 239251.CrossRefGoogle ScholarPubMed
Burton, R.S. & Lee, B.N., 1994. Nuclear and mitochondrial gene genealogies and allozyme polymorphism across a major phylogeographic break in the copepod Tigriopus californicus. Proceedings of the National Academy of Sciences of the United States of America, 91, 51975201.CrossRefGoogle Scholar
Candeias, A., 1959. Contribution to the knowledge of the Harpacticoid (Crustacea, Copepoda) from the littoral of Angola. Publicaçōes Culturais sa Companhia de Diamantes de Angola, Lisboa, 14, 8486.Google Scholar
Carli, A. & Fiori, A., 1977. Morphological analysis of the two Tigriopus species found along the European coasts, Copepoda: Harpacticoida. Natura, Milano, 68, 101110.Google Scholar
Chalker-Scott, L., 1995. Survival and sex ratios of the intertidal copepod, Tigriopus californicus, following ultraviolet-B (290–320) radiation exposure. Marine Biology, 123, 799804.CrossRefGoogle Scholar
Clapperton, C.M., Sugden, D.E., Birnie, R. V., Hansom, J.D. & Thorn, G., 1978. Glacier fluctuations in South Georgia and comparison with other island groups in the Scotia Sea. In Antarctic glacial history and world palaeoenvironments (ed. E.M., Van Zinderen Bakker), pp. 95104. Rotterdam: A.A. Balkema.Google Scholar
Croghan, P.C., 1958. The osmotic and ionic regulation of Artemia salina (L.). Journal of Experimental Biology, 35, 219233.CrossRefGoogle Scholar
Damgaard, R.M. & Davenport, J., 1994. Salinity tolerance, salinity preference and temperature tolerance in the high-shore harpacticoid copepod Tigriopus brevicornis. Marine Biology, 118, 443449.CrossRefGoogle Scholar
Davenport, J., 1994. Observations on the behaviour, salinity relations and colour change of Ligia italica from Madeira. Journal of the Marine Biological Association of the United Kingdom, 74, 959962.CrossRefGoogle Scholar
Davenport, J. & Macalister, H., 1996. Environmental conditions and physiological tolerances of intertidal fauna in relation to shore zonation at Husvik, South Georgia. Journal of the Marine Biological Association of the United Kingdom, 76, 9851002.CrossRefGoogle Scholar
Dethier, M.N., 1980. Tidepools as refuges: predation and the limits of the harpacticoid copepod Tigriopus californicus (Baker). Journal of Experimental Marine Biology and Ecology, 42, 99112.CrossRefGoogle Scholar
Finney, C.M., 1979. Salinity stress in harpacticoid copepods. Estuaries, 2, 132135.CrossRefGoogle Scholar
Finney, D.J., 1971. Probit analysis, 3rd ed.Cambridge University Press.Google Scholar
Fraser, J.H., 1936. The occurrence, ecology and life history of Tigriopus fulvus (Fischer). Journal of the Marine Biological Association of the United Kingdom, 20, 523536.CrossRefGoogle Scholar
Ganning, B., 1970. Population dynamics and salinity tolerance of Hyadesia fusca (Lohmann) (Acarina, Sarcoptiformes) from brackish water rockpools, with notes on the microenvironment inside Enteromorpha tubes. Oecologia, 5, 127137.CrossRefGoogle Scholar
Ganz, H.H. & Burton, R.S., 1995. Genetic differentiation and reproductive incompatibility among Baja California populations of the copepod Tigriopus californicns. Marine Biology, 123, 821827.CrossRefGoogle Scholar
Giesbrecht, W., 1902. Copepoden. Resultats du voyage du S.Y. Belgica en 1897–1898–1899. Zoologie, 1, 139.Google Scholar
Goolish, E.M. & Burton, R.S., 1988. Exposure to fluctuating salinity enhances free amino acid accumulation in T. californicus (Copepoda). Journal of Comparative Physiology, 158B, 99105.CrossRefGoogle Scholar
Goolish, E.M. & Burton, R.S., 1989. Energetics of osmoregulation in an intertidal copepod: effects of anoxia and lipid reserves on the pattern of free amino acid accumulation. Functional Ecology, 3, 8189.CrossRefGoogle Scholar
Grindley, J.R., 1971. Tigriopus angulatus Lang. In Marion and Prince Edward Islands, report of South African Biological and Geological Expedition 1965–66 (ed. E.M., Van Zinderen Bakker et al.), pp 373378. Cape Town: A.A. Balkema.Google Scholar
Hairston, N.G. Jr, 1979. The adaptive significance of colour polymorphism in two species of Diaptomus (Copepoda). Limnology and Oceanography, 24, 1537.CrossRefGoogle Scholar
Hayward, P.J. & Ryland, J.S., 1995. Handbook of the marine fauna of north-west Europe. Oxford University Press.CrossRefGoogle Scholar
Headland, R., 1984. The island of South Georgia. Cambridge University Press.Google Scholar
Helmuth, B., Velt, R.R. & Holberton, R., 1994. Long distance dispersal of a subantarctic brooding bivalve (Gaimardia trapesina) by kelp-rafting. Marine Biology, 120, 421426.CrossRefGoogle Scholar
Huizinga, H.W., 1971. Cultivation, life history and salinity tolerance of Tigriopus californicus in artificial sea water. Transactions of the Illinois State Academy of Science, 64, 230236.Google Scholar
Issel, R., 1914. Vita latente per concentraze dell'acqua e biologia delle pozze de scogliera. Mitteilungen aus der Zoologischen Station zu Neapel, Berlin, 22, 191255.Google Scholar
Itô, T., 1977. New species of marine harpacticoid copepods of the genera Harpacticella and Tigriopus from the Bonin Islands, with reference to the morphology of copepodid stages. Journal of the Faculty of Science, Hokkaido University, 21, 6191.Google Scholar
Johannesson, K., 1988. The paradox of Rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)! Marine Biology, 99, 507513.CrossRefGoogle Scholar
Jokiel, P.L., 1990. Transport of reef corals into the Great Barrier Reef. Nature, London, 347, 665.CrossRefGoogle Scholar
Kahan, D., Berman, Y. & Bar-El, T., 1988. Maternal inhibition of hatching at high population densities in Tigriopus japonicus (Copepoda, Crustacea). Biological Bulletin. Marine Biological Laboratory, Woods Hole, 174, 139144.CrossRefGoogle Scholar
Kasahara, S. & Akiyama, T., 1976. Notes on dormancy in the adults of Tigriopus japonicus. Journal of the Faculty of Fisheries and Animal Husbandry, Hiroshima University, 15, 5765.Google Scholar
Kontogiannis, J.E., 1975. Acquisition and loss of heat resistance in adult tidepool copepod Tigriopus californicus. Physiological Zoology, 46, 5054.CrossRefGoogle Scholar
Lang, K., 1933. Zwei neue Brackwasserharpacticiden von den Macquarie-Inseln. Kungliga. Fysiografiska sällskapets i Lund förhandlingar, 3, 114.Google Scholar
Lang, K., 1934. Marine Harpacticiden von der Cambell-Insel und einigen anderen südlichen Inseln. Lunds Universitets Årsskrift. N.F. Avd., 2, 30,1–55.Google Scholar
Lang, K., 1948. Monographic der Harpacticiden. Lund: Häkan Ohlsons Boktryckeri.Google Scholar
Lazzaretto, I. & Salvato, B., 1992. Cannibalistic behaviour in the harpacticoid copepod Tigriopus fulvus. Marine Biology, 113, 579582.CrossRefGoogle Scholar
Lazzaretto, I., Salvato, B. & Libertini, A., 1990. Evidence of chemical signalling in Tigriopus fulvus Copepoda: Harpacticoida. Crustaceana, 59, 171179.CrossRefGoogle Scholar
McDonough, P.M. & Stiffler, D.F., 1981. Sodium regulation in the tidepool copepod Tigriopus californicus. Comparative Biochemistry and Physiology, 69A, 273277.CrossRefGoogle Scholar
Moore, P.G., Macalister, H.E. & Taylor, A.C., 1995. The environmental tolerances and behavioural ecology of the sub-Antarctic beach hopper ‘Orchestia’ saitigerula Dana (Crustacea: Amphipoda) from Husvik, South Georgia. Journal of Experimental Marine Biology and Ecology, 189, 159182.CrossRefGoogle Scholar
Murray, J., 1897. On the deep and shallow-water marine fauna of the Kerguelen Region of the Great Southern Ocean. Transactions of the Royal Society of Edinburgh, 38, 343500.CrossRefGoogle Scholar
Mututani, K., 1962. Studies on the temperature and salinity resistance of Tigriopus japonicus. IV. Heat resistance in relation to salinity, of Tigriopus japonicus acclimated to dilute and concentrated sea waters. Physiological Ecology, 10, 6367.Google Scholar
Ranade, M.R., 1957. Observations on the resistance of Tigriopus fulvus (Fischer) to changes in temperature and salinity. Journal of the Marine Biological Association of the United Kingdom, 36, 115119.CrossRefGoogle Scholar
Russler, D. & Mangos, J., 1978. Micropuncture studies of the osmoregulation in the nauplius of Artemia salina. American Journal of Physiology, 234, 216222.Google ScholarPubMed
Soyer, J., Thiriot-Quievreux, C. & Colomines, J.-C., 1987. Description de deux especes jumelles du groupe Tigriopus angulatus (Copepoda, Harpacticoida) dans les archipels Crozet et Kerguelen (terres Australes et Antarctiques Franchises). Zoologica Scripta, 16, 143154.CrossRefGoogle Scholar
Studer, T.H., 1879. Die Fauna von Kerguelensland. Verzeichnis der bisjetzt auf Kerguelensland beobachten Tierspecies; Kurzen Notizen über ihr Vorkommen und ihre zoogeographischen Beziehungen. Archiv für Naturgeschichte, 45, 104141.Google Scholar
Takeda, N., 1958. Thermal adaptation in the marine copepod, Tigriopus japonicus Mori. Physiological Ecology, 6, 4954.Google Scholar
Walden, H.W., 1984. On the origin, affinities, and evolution of the land Mollusca of the mid-Atlantic islands, with special reference to Madeira. Boletim do Museu Municipal do Funchal, 36, 5182.Google Scholar