Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T14:47:27.728Z Has data issue: false hasContentIssue false

The effects of seasonal variation on the nutritional condition of Nephrops norvegicus (Astacidea: Nephropidae) from wild populations in the western Mediterranean

Published online by Cambridge University Press:  14 February 2014

Guiomar Rotllant*
Affiliation:
Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta 36-49, 08003 Barcelona, Spain IRTA, Ctra. Poble Nou, Km. 5.5, 43540. Sant Carles de la Ràpita (Tarragona), Spain
Joan B. Company
Affiliation:
Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta 36-49, 08003 Barcelona, Spain
Inmaculada Alvarez-Fernández
Affiliation:
Grupo de Recursos Marinos y Pesquerías, Universidad de A Coruña, Rúa da Fraga 10, 15008 A Coruña, Spain
José A. García
Affiliation:
Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta 36-49, 08003 Barcelona, Spain
Jacopo Aguzzi
Affiliation:
Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta 36-49, 08003 Barcelona, Spain
Mercè Durfort
Affiliation:
Departament de Biologia Cel·lular, Facultad de Biologia, Universitat de Barcelona, Avenida Diagonal, 643, 08028 Barcelona, Spain
*
Correspondence should be addressed to: G. Rotllant, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta 36-49, 08003 Barcelona, Spain email: [email protected]

Abstract

The Norway lobster, Nephrops norvegicus is a target fishery species in European waters. The stock assessment of N. norvegicus is complicated because it is caught in commercial gear only when it emerges from its burrow. Landings are lower in winter, and feeding limitations have been hypothesized as the cause. Wild large-sized male lobsters were sampled each season (winter, spring, summer and autumn), and two groups of animals were kept in captivity for 90 d (fed and food-deprived). The hepatopancreas and muscle were dissected, weighted, frozen for biochemical analyses (proximal analyses and DNA/RNA) and fixed in Bouin solution for microscopic observations. The oxygen consumption rates in the wild individuals caught in the spring and in the captive animals after the treatments were measured. Significant differences among the experimental groups were observed in the lipid concentration of the hepatopancreas and muscle, the water content in the hepatopancreas, and the numbers of vacuoles and pyknotic nuclei in the cells of the tubules of the hepatopancreas. The results showed that the wild Norway lobsters generally presented intermediate values between those observed in the food-deprived and the fed lobsters kept in captivity, but the values were closer to those obtained for the fed animals. This finding indicates that the wild animals exhibit a good nutritional condition throughout the year. Therefore, the wild males of N. norvegicus do not face food deprivation during winter as is suggested by the pattern of commercial catches, the flow of organic matter, and the moulting period/reproductive behaviour of the species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abelló, P., Abella, A., Adamidou, A., Jukic-Peladic, S., Maiorano, P. and Spedicato, M.T. (2002a) Geographical patterns in abundance and population structure of Nephrops norvegicus and Parapenaeus longirostris (Crustacea: Decapoda) along the European Mediterranean coasts. Scientia Marina 66 125141.CrossRefGoogle Scholar
Abello, P., Carbonell, A. and Torres, P. (2002b) Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Scientia Marina 66, 183198.CrossRefGoogle Scholar
Abelló, P., Valladares, F.J. and Castellón, A. (1988) Analysis of the structure of decapod crustacean assemblages off the Catalan coast (North-West Mediterranean). Marine Biology 98, 3949.CrossRefGoogle Scholar
Aguzzi, J., Bozzano, A. and Sardà, F. (2004) First observations on Nephrops norvegicus (L.) burrow densities on the continental shelf off the Catalan Coast (Western Mediterranean). Crustaceana 77, 299310.Google Scholar
Aguzzi, J., Company, J.B., Sardà, F. and Abelló, P. (2003a) Circadian oxygen consumption patterns in continental slope Nephrops norvegicus (Decapoda: Nephropidae) in the western mediterranean. Journal of Crustacean Biology 23, 749757.CrossRefGoogle Scholar
Aguzzi, J. and Sardà, F. (2008) A history of recent advancements on Nephrops norvegicus behavioral and physiological rhythms. Reviews in Fish Biology and Fisheries 18, 235248.CrossRefGoogle Scholar
Aguzzi, J., Sarda, F., Abello, P., Company, J.B. and Rotllant, G. (2003b) Diel and seasonal patterns of Nephrops norvegicus (Decapoda: Nephropidae) catchability in the western Mediterranean. Marine Ecology Progress Series 258, 201211.CrossRefGoogle Scholar
Aguzzi, J., Sarda, F. and Allué, R. (2004) Seasonal dynamics in Nephrops norvegicus (Decapoda: Nephropidae) catches off the Catalan coasts (Western Mediterranean). Fisheries Research 69, 293300.CrossRefGoogle Scholar
Aldrich, J.C. (1975) Individual variability in oxygen consumption rates of fed and starved Cancer pagurus and Maia squinado. Comparative Biochemistry and Physiology 51A, 175183.CrossRefGoogle Scholar
Ansell, A.D. (1973) Changes in oxygen consumption, heart rate and ventilation accompanying starvation in the decapod crustacean Cancer pagurus. Netherlands Journal of Sea Research 7, 455475.CrossRefGoogle Scholar
Atwood, H.L. (1972) Crustacean muscle. In Bourne, G. (ed.) The structure and function of muscle, Volume 1. New York: Academic Press, pp. 421489.CrossRefGoogle Scholar
Baden, S.P., Depledge, M.H. and Hagerman, L. (1994) Glycogen depletion and altered copper and manganese handling in Nephrops norvegicus following starvation and exposure to hypoxia. Marine Ecology Progress Series 103, 6572.CrossRefGoogle Scholar
Bell, M., Redant, F. and Tuck, I. (2006) Nephrops species. In Phillips, B. (ed.) Lobsters: biology, management, aquaculture and fisheries. Oxford: Blackwell, pp. 412461.CrossRefGoogle Scholar
Cartes, J.E. and Sarda, F. (1993) Zonation of deep-sea decapod fauna in the Catalan Sea (Western Mediterranean). Marine Ecology Progress Series 94, 2734.CrossRefGoogle Scholar
Chiesa, J.J., Aguzzi, J., García, J.A., Sardà, F. and de la Iglesia, H.O. (2010) Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda). Journal of Biological Rhythms 25, 277287.CrossRefGoogle ScholarPubMed
Childress, J.J. and Somero, G.N. (1979) Depth-related enzymic activities in muscle, brain and heart of deep-living pelagic marine teleosts. Marine Biology 52, 273283.CrossRefGoogle Scholar
Clemmesen, C. (1993) Improvements in the fluorimetric determination of the RNA and DNA content of individual marine fish larvae Marine Ecology Progress Series 100, 177183.CrossRefGoogle Scholar
Comoglio, L., Smolko, L. and Amin, O. (2005) Effects of starvation on oxygen consumption, ammonia excretion and biochemical composition of the hepatopancreas on adult males of the False Southern King crab Paralomis granulosa (Crustacea, Decapoda). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 140, 411416.CrossRefGoogle ScholarPubMed
Company, J.B. and Sardà, F. (1998) Metabolic rates and energy content of deep-sea benthic decapod crustaceans in the western Mediterranean Sea. Deep-Sea Research I 45, 18611880.CrossRefGoogle Scholar
Company, J.B., Puig, P., Sardà, F., Palanques, A., Latasa, M. and Scharek, R. (2008) Climate influence on deep sea populations. PLoS ONE 3, e1431. doi:10.1371/journal.pone.0001431.CrossRefGoogle ScholarPubMed
Crear, B.J. and Forteath, G.N.R. (2000) The effect of extrinsic and intrinsic factors on oxygen consumption by the southern rock lobster, Jasus edwardsii. Journal of Experimental Marine Biology and Ecology 252, 129147.CrossRefGoogle ScholarPubMed
Crear, B.J. and Forteath, G.N.R. (2002) Feeding has the largest effect on the ammonia excretion rate of the southern rock lobster, Jasus edwardsii, and the western rock lobster, Panulirus cygnus. Aquacultural Engineering 26, 239250.CrossRefGoogle Scholar
Cristo, M. and Cartes, J.E. (1998) A comparative study of the feeding ecology of Nephrops norvegicus (L.), (Decapoda: Nephropidae) in the bathyal Mediterranean and the adjacent Atlantic. Scientia Marina 62, 8190.Google Scholar
Cuzon, G., Cahu, C., Aldrin, J.F., Messager, J.L., Stéphan, G. and Mével, M. (1980) Starvation effect on metabolism of Penaeus japonicus. Proceedings of the World Mariculture Society 11, 410423.CrossRefGoogle Scholar
Dall, W. (1981) Lipid absorption and utilization in the Norwegian lobster, Nephrops norvegicus (L.). Journal of Experimental Marine Biology and Ecology 50, 3345.CrossRefGoogle Scholar
Díaz-Iglesias, E., Robles-Murillo, A.K., Buesa, R.J., Báez-Hidalgo, M. and López-Zenteno, M. (2011) Bioenergetics of red spiny lobster Panulirus interruptus (Randall, 1840) juveniles fed with mollusc. Aquaculture 318, 207212.CrossRefGoogle Scholar
DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Analitycal Chemistry 28, 350356.CrossRefGoogle Scholar
Endeco/YSI Incorporated (1992) Operating Manual Type 1125 Pulsed D.O. System, Vol., Marion, MA, USA, pp. 140.Google Scholar
Farmer, A.S.D. (1975) Synopsis of biological data on the Norway lobster, Nephrops norvegicus. FAO Fisheries Synopsis 112, 197.Google Scholar
Fowler, D.S. and Neil, D.M. (1992) Histochemical heterogeneity of fibers in the abdominal superficial flexor muscles of the Norway lobster, Nephrops norvegicus (L.). Journal of Experimental Zoology 264, 406418.CrossRefGoogle ScholarPubMed
Gibson, R. and Barker, P.L. (1979) The decapod hepatopancreas. Oceanography and Marine Biology: an Annual Review 17, 285346.Google Scholar
Heussner, S., Durrieu de Madron, X., Calafat, A., Canals, M., Carbonne, J., Delsaut, N. and Saragoni, G. (2006) Spatial and temporal variability of downward particle fluxes on a continental slope: lessons from an 8-yr experiment in the Gulf of Lions (NW Mediterranean). Marine Geology 234, 6392.CrossRefGoogle Scholar
Hewitt, D.R. and Irving, M. (1990) Oxygen consumption and ammonia excretion of the brown tiger prawn Penaeus esculentus fed diets of varying protein content. Comparative Biochemestry and Physiology 96A, 373378.CrossRefGoogle Scholar
Hopkins, T.S. (1984) Physics of the sea. In Margalaf, R. (ed.) Western Mediterranean. Barcelona: Pergamon Press, pp. 100125.Google Scholar
Karakoltsidis, P.A., Zotos, A. and Constantinides, S. (1995) Composition of the commercially important Mediterranean finfish, crustaceans, and molluscs. Journal of Food Composition and Analysis 8, 258273.CrossRefGoogle Scholar
Lowry, O.H., Rosenberg, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biology and Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Main, J. and Sangster, G.I. (1985) The behaviour of the Norway lobster Nephrops norvegicus (L) during trawling. Scottish Fisheries Research Report 34, 123.Google Scholar
Maynou, F. and Sardà, F. (1997) Nephrops norvegicus population and morphometrical characteristics in relation to substrate heterogeneity. Fisheries Research 30, 139149.CrossRefGoogle Scholar
Maynou, F.X., Sarda, F. and Conan, G.Y. (1998) Assessment of the spatial structure and biomass evaluation of Nephrops norvegicus (L.) populations in the Northwestern Mediterranean by geostatistics. ICES Journal of Marine Science 55, 102120.CrossRefGoogle Scholar
McLeod, L.E., Carter, C.G. and Johnston, D.J. (2004) Changes in the body composition of adult male southern rock lobster, Jasus edwardsii, during starvation. Journal of Shellfish Research 23, 257264.Google Scholar
Mente, E. (2010) Survival, food consumption and growth of Norway lobster (Nephrops norvegicus) kept in laboratory conditions. Integrative Zoology 5, 256263.CrossRefGoogle ScholarPubMed
Mente, E., Carter, C.G., Barnes, R.S. and Karapanagiotidis, I.T. (2011) Protein synthesis in wild-caught Norway lobster (Nephrops norvegicus L.). Journal of Experimental Marine Biology and Ecology 409, 208214.CrossRefGoogle Scholar
Moksness, E., Belchier, M., Clemmesen, C., Cortés, D., Doan, A., Folkvord, A., García, A., Geffen, A.J., Høie, H., Johannessen, A., de Pontual, H., Rámirez, T., Schnack, D. and Sveinsbø, B. (2000) Manual of tools for recruitment studies. Final Report FAIR- CT96-1371, pp. 1–42.Google Scholar
Neiland, K.A. and Scheer, B.T. (1953) The influence of fasting and of sinus gland removal on body composition of Hemigrapsus nudus. Part V of the hormonal regulation of metabolism in Crustaceans. Physiology and Comparative Oecology 3, 321326.Google Scholar
Parslow-Williams, P., Goodheir, C., Atkinson, R.J.A. and Taylor, A.C. (2002) Feeding energetics of the Norway lobster, Nephrops norvegicus in the Firth of Clyde, Scotland. Ophelia 56, 101120.CrossRefGoogle Scholar
Parslow-Williams, P.J. (1998) Nutritional limitation in populations of the Norway lobster, Nephrops norvegicus (L.) in the Firth of Clyde, Scotland. PhD thesis. University of Glasgow, UK.Google Scholar
Parslow-Williams, P.J., Atkinson, R.J.A. and Taylor, A.C. (2001) Nucleic acids as indicators of nutritional condition in the Norway lobster Nephrops norvegicus. Marine Ecology Progress Series 211, 235243.CrossRefGoogle Scholar
Perera, E., Díaz-Iglesias, E., Fraga, I., Carrillo, O. and Galich, G.S. (2007) Effect of body weight, temperature and feeding on the metabolic rate in the spiny lobster Panulirus argus (Latreille, 1804). Aquaculture 265, 261270.CrossRefGoogle Scholar
Prosser, C.L. (1973) Oxygen: respiration and metabolism. In Prosser, C.l. (ed.) Comparative animal physiology. Philadelphia, PA: W.B. Saunders, pp. 165211.Google Scholar
Rosa, R. and Nunes, M.L. (2002) Biochemical changes during the reproductive cycle of the deep-sea decapod Nephrops norvegicus on the south coast of Portugal. Marine Biology 141, 10011009.Google Scholar
Rotllant, G., Anger, K., Durfort, M. and Sarda, F. (2004) Elemental and biochemical composition of Nephrops norvegicus (Linnaeus 1758) larvae from the Mediterranean and Irish Seas. Helgoland Marine Research 58, 206210.CrossRefGoogle Scholar
Rotllant, G., Charmantier-Daures, M., Charmantier, G., Anger, K. and Sarda, F. (2001) Effects of diet on Nephrops norvegicus (L.) larval and postlarval development, growth, and elemental composition. Journal of Shellfish Research 20, 347352.Google Scholar
Rotllant, G., Ribes, E., Company, J.B. and Durfort, M. (2005) The ovarian maturation cycle of the Norway lobster Nephrops norvegicus (Linnaeus, 1758) (Crustacea, Decapoda) from the western Mediterranean Sea. Invertebrate Reproduction & Development 48, 161169.CrossRefGoogle Scholar
Sánchez-Paz, A., García-Carreño, F., Muhlia-Almazán, A., Peregrino-Uriarte, A.B., Hernández-López, J. and Yepiz-Plascencia, G. (2006) Usage of energy reserves in crustaceans during starvation: Status and future directions. Insect Biochemistry and Molecular Biology 36, 241249.CrossRefGoogle ScholarPubMed
Sardà, F. (1983) Determinación de los estados de intermuda en Nephrops norvegicus (L.), mediante la observación de los pleópodos. Investigación Pesquera 47, 95112.Google Scholar
Sardà, F. (1998a) Nephrops norvegicus comparative biology and fishery in the Mediterranean Sea. Scientia Marina 62 (Supplement 1), 1143.Google Scholar
Sardà, F. (1998b) Symptoms of overexploitation in the stock of the Norway lobster (Nephrops norvegicus) on the ‘Serola Bank’ (Western Mediterranean Sea off Barcelona). Scientia Marina 62, 295299.Google Scholar
Sardà, F. and Aguzzi, J. (2012) A review of burrow counting as an alternative to other typical methods of assessment of Norway lobster populations. Reviews in Fish Biology and Fisheries 22, 409422.CrossRefGoogle Scholar
Sardà, F. and Lleonart, J. (1993) Evaluation of the Norway lobster (Nephrops norvegicus, L.) resource off the ‘Serola’ bank off Barcelona (western Mediterranean). Scientia Marina 57, 191197.Google Scholar
Sardà, F. and Valladares, F.J. (1990) Gastric evacuation of different foods by Nephrops norvegicus (Crustacea: Decapoda) and estimation of soft tissue ingested, maximum food intake and cannibalism in captivity. Marine Biology 104, 2530.CrossRefGoogle Scholar
Thomas, C.W., Crear, B.J. and Hart, P.R. (2000) The effect of temperature on survival, growth, feeding and metabolic activity of the southern rock lobster, Jasus edwardsii. Aquaculture 185, 7384.CrossRefGoogle Scholar
Tuck, I.D., Chapman, C.J. and Atkinson, R.J.A. (1997) Population Biology of the Norway Lobster, Nephrops norvegicus (L) in the Firth of Clyde, Scotland. 1. Growth and density. ICES Journal of Marine Science 54, 125135.CrossRefGoogle Scholar
Vernet, G. and Charmantier-Daurès, M. (1994) Mue, autotomie et régéneration. In Grassé, P.P. (ed.) Traité de Zoologie. Anatomie, systématique, biologie. Volume VII: Crustacés. Paris: Masson, pp. 107194.Google Scholar
Vogt, G., Storch, V., Quinitio, E.T. and Pascual, F.P. (1985) Midgut gland as monitor organ for the nutritional value of diets in Penaeus monodon (Decapoda). Aquaculture 48, 112.CrossRefGoogle Scholar
Watts, A.J.R. (2012) Nutritional status and trophic dynamics of the norway lobster Nephrops norvegicus (L.). PhD thesis. University of Glasgow, UK.Google Scholar
Wilber, D.H. and Wilber, P.T.J. (1989) The effects of holding space and diet on the growth of the West Indian spider crab Mithrax spinosissimus (Lamarck). Journal of Experimental Marine Biology and Ecology 131, 215222.CrossRefGoogle Scholar
Zöllner, N. and Kirsch, K. (1962) Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoide) gemeinsamen Sulfophosphovanillin-Reaktion. Zeitschrift für die Gesamte Experimentelle Medizin 135, 545561.CrossRefGoogle Scholar