Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T18:53:33.868Z Has data issue: false hasContentIssue false

Dysponetus joeli sp. nov. (Polychaeta: Chrysopetalidae) from the north-east Atlantic, with a cladistic analysis of the genus and a key to species

Published online by Cambridge University Press:  22 May 2012

Frederic Olivier*
Affiliation:
Muséum National d'Histoire Naturelle, Département Milieux et Peuplements Aquatiques, UMR 7208 BOREA MNHN/CNRS/P6/IRD
Paulo Lana
Affiliation:
Centro de Estudos do Mar–Universidade Federal do Paraná, Avenida Beira-Mar s/n, CEP 83255-976, Pontal do Sul, Paraná, Brazil
Veronica Oliveira
Affiliation:
Centro de Estudos do Mar–Universidade Federal do Paraná, Avenida Beira-Mar s/n, CEP 83255-976, Pontal do Sul, Paraná, Brazil
Tim Worsfold
Affiliation:
Thomson Unicomarine Ltd, 7 Diamond Centre, Works Road, Letchworth, Hertfordshire, SG6 1LW, UK, and Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1QU, UK
*
Correspondence should be addressed to: F. Olivier, ISMER/UQAR, 310, allée des Ursulines, CP 3300 Rimouski QCCanadaG5L 3A email [email protected]

Abstract

We describe Dysponetus joeli sp. nov. from shallow maerl habitats in the north-east Atlantic (English Channel and Bay of Biscay). Dysponetus joeli differs from congeneric species by a unique combination of characters, including a large syllid-like pharynx, 2–4 simple serrated neurochaetae (closely similar to notochaetae, but much smaller and more delicate), D-shaped chaetal spines and ventral cirri on the third segment. A phylogenetic parsimony analysis based on morphological traits suggests that Dysponetus is not monophyletic unless it includes the closely related genera Vigtorniella and Pseudodysponetus, which are well delineated inside the dysponetid clade. Chaetal spines seem to be secondarily derived from paleae and to have originated in infaunal dysponetid forms. They should not be considered as plesiomorphic, but as evidence to support the clade made up by Dysponetus–Vigtorniella and Pseudodysponetus as delineated by a phylogenetic analysis.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annenkova, N.P. (1935) Über Dysponetus pygmeus Levinsen und Euzonus arcticus Grube. Comptes Rendus de l'Académie des Sciences de l'USSR 3, 233236.Google Scholar
Böggemann, M. (2009) Polychaetes (Annelida) of the abyssal SE Atlantic. Organisms, Diversity and Evolution 9, 251428.Google Scholar
Butterfield, N.J. (1990) A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology 16, 287303.Google Scholar
Butterfield, N.J. (1994) Burgess Shale-type fossils from Lower Cambrian shallow-shelf sequence in Northwestern Canada. Nature 369, 477479.CrossRefGoogle Scholar
Butterfield, N.J. and Nicholas, C.J. (1996) Burgess Shale-type preservation of both non-mineralizing and ‘shelly’ Cambrian organism from the Mackenzie Mountains, Northwestern Canada. Journal of Paleontology 70, 893899.Google Scholar
Dahlgren, T.G. (1996) Two new species of Dysponetus (Polychaeta: Chrysopetalidae) from Italy and Papua New Guinea. Proceedings of the Biological Society of Washington 109, 575585.Google Scholar
Dahlgren, T.G. (2000) From individuals to deep metazoan branches: relationships and delineation of recent and fossil Chrysopetalidae (Annelida). PhD thesis. Göteborg University, Göteborg, Sweden.Google Scholar
Dahlgren, T.G., Glover, A.G., Baco, A. and Smith, C.R. (2004) Fauna of whale falls: systematics and ecology of a new polychaete (Annelida: Chrysopetalidae) from the deep Pacific Ocean. Deep-Sea Research I 51, 18731887.Google Scholar
Dahlgren, T.G., Lundberg, J., Pleijel, F. and Sundberg, P. (2000) Morphological and molecular evidence of the phylogeny of nereidiform polychaetes (Annelida). Journal of Zoological Systematics and Evolutionary Research 38, 249254.Google Scholar
Dahlgren, T.G. and Pleijel, F. (1995) On the generic allocation of Chrysopetalum caecum Langerhans, 1880 (Polychaeta, Chrysopetalidae). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, Ergänzungsband 92, 159173.Google Scholar
Fauchald, K. and Rouse, G. (1997) Polychaete systematics: past and present. Zoologica Scripta 26, 71138.Google Scholar
Fitzhugh, K. (2005) The inferential basis of species hypotheses: the solution to defining the term ‘species'. Marine Ecology 26, 155165.CrossRefGoogle Scholar
Grall, J. and Hall-Spencer, J.M. (2003) Problems facing maerl conservation in Brittany. Aquatic Conservation: Marine and Freshwater Ecosystems 13, S55S64.Google Scholar
Kisseleva, M.I. (1992) New genus and species of the family Chrysopetalidae (Polychaeta) from the Black Sea. Zoologicheskii Zhurnal 71, 128132.Google Scholar
Laubier, L. (1964) Contribution à la faunistique du coralligène. VI. Presence de Chrysopetalum caecum Langerhans dans l'endofaune coralligène. Vie et Milieu 15, 125138.Google Scholar
Laubier, L. (1968) Contributions a la faunistique du coralligène, VII. A propos de quelques Annélides Polychètes rares ou nouvelles (Chrysopetalidae, Syllidae et Spionidae). Annales de l'Institut Océanographique de Monaco 46, 79107.Google Scholar
Levinsen, G.M.R. (1883) Systematisk-geografisk Oversigt over de nordiske Annulata, Gephyrea, Chaetognathi og Balanoglossi. Første Halvdel. Videnskabelige Meddelelser fra Dansk Naturshistorisk Førening i Køjbehavn 34, 160250.Google Scholar
Maddison, W.P. and Maddison, D.R. (2010) Mesquite: a modular system for evolutionary analysis. Version 2.74. Available at http://mesquiteproject.org (accessed 3 March 2012).Google Scholar
Muir, A.I. and Bamber, R.N. (2008) New polychaete (Annelida) records and a new species from Hong Kong: the families Polynoidae, Sigalionidae, Chrysopetalidae, Pilargiidae, Nereididae, Opheliidae, Ampharetidae and Terebellidae. Journal of Natural History 42, 797814.CrossRefGoogle Scholar
Perkins, T.H. (1985) Chrysopetalum, Bhawania and two new genera of Chrysopetalidae (Polychaeta), principally from Florida. Proceedings of the Biological Society of Washington 98, 856915.Google Scholar
Pleijel, F. (1995) On character coding for phylogeny reconstruction. Cladistics 11, 309315.Google Scholar
Pleijel, F. and Dahlgren, T.G. (1998) Position and delineation of Chrysopetalidae and Hesionidae (Annelida, Polychaeta, Phyllodocida). Cladistics 14, 129150.Google Scholar
San Martín, G. (1986) Acanthopale perkinsi gen. et sp. n. (Polychaeta, Chrysopetalidae) from Cuba and Florida. Zoologica Scripta 15, 305312.Google Scholar
Struck, T.H., Paul, C., Hill, N., Hartmann, S., Hösel, C., Kube, M., Lieb, B., Meyer, A., Tiedemann, R., Purschke, G. and Bleidorn, C. (2011) Phylogenomic analyses unravel annelid evolution. Nature 471, 95100.Google Scholar
Tzetlin, A.B., Dahlgren, T.G. and Purschke, G. (2002) Ultrastructure of the body wall, body cavity, nephridia and spermatozoa in four species of the Chrysopetalidae (Annelida, ‘Polychaeta'). Zoologischer Anzeiger 241, 3755.Google Scholar
Westheide, W. and Watson Russell, C. (1992) Ultrastructure of chrysopetalid paleal chaetae (Annelida, Polychaeta). Acta Zoologica 73, 197202.Google Scholar
Wiklund, H., Glover, A.G., Johanessen, P.J. and Dahlgren, T.G. (2009) Cryptic speciation at organic-rich marine habitats: a new bacteriovore annelid from whale-fall and fish farms in the North-East Atlantic. Zoological Journal of the Linnean Society 155, 774785.Google Scholar
Zrzavý, J., Řiha, P., Pialek, L. and Janouskovec, J. (2009) Phylogeny of Annelida (Lophotrochozoa): total-evidence analysis of morphology and six genes. BMC Evolutionary Biology 9, 189.Google Scholar