Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T15:33:34.717Z Has data issue: false hasContentIssue false

Does The Fish-Killing Dinoflagellate Gymnodinium CF. Nagasakiense Produce Cytotoxins?

Published online by Cambridge University Press:  11 May 2009

Frederic Partensky
Affiliation:
Station Biologique C.N.R.S. U.P.R. 4601, Place Teissier, 29211 Roscoff, France
Jean Le Boterff
Affiliation:
Groupe de Recherches: Substances Marines à Activité Biologique (S.M.A.B.), U.F.R. des sciences pharmaceutiques, 1, rue Gaston Veil, 44035 Nantes Cedex, France
Jean-François Verbist
Affiliation:
Groupe de Recherches: Substances Marines à Activité Biologique (S.M.A.B.), U.F.R. des sciences pharmaceutiques, 1, rue Gaston Veil, 44035 Nantes Cedex, France

Extract

The naked dinoflagellate Gymnodinium cf. nagasakiense is responsible for red tides frequently associated with mortality of marine organisms in North European waters during summer (see reviews by Tangen, 1977 and Partensky & Sournia, 1986). This species is currently referred to as Gyrodinium aureolum Hulburt in the literature, since its first occurrence in Norwegian waters in 1966 (Braarud & Heimdal, 1970). However, it was recently found to be morphologically closer to the Japanese bloom-forming species Gymnodinium nagasakiense Takayama & Adachi than to the original Gyrodinium aureolum (Partensky et al., 1988).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biard, J.F. & Verbist, J.F., 1981. Agents antineoplasiques des algues marines: substances cytotoxiques de Colpomenia peregrina Sauvageau (Scytosiphonacees). Plantes Medicinales et Phytotherapie, 15, 167171.Google Scholar
Boalch, G.T., 1979. The dinoflagellate bloom on the coast of south-west England, August-September 1978. Journal of the Marine Biological Association of the United Kingdom, 59, 515517.CrossRefGoogle Scholar
Braarud, T. & Heimdal, , 1970. Brown water on the Norwegian coast in autumn 1966. Nytt Magasin for Botanikk, 17, 9197.Google Scholar
Cross, T.F. & Southgate, T., 1980. Mortalities of fauna of rocky substrates in south-west Ireland associated with the occurrence of Gyrodinium aureolum blooms during autumn 1979. Journal of the Marine Biological Association of the United Kingdom, 60, 10711073.CrossRefGoogle Scholar
Dahl, E., Danielssen, D.S. & Bohle, B., 1982. Mass occurrence of Gyrodinium aureolum Hulburt and fish mortality along the southern coast of Norway in September-October 1981. International Council for the Exploration of the Sea (CM. Papers and Reports), L: 56, 13 pp.Google Scholar
Gouiffes, D., Biard, J.F., Roussakis, C., Letourneux, Y., Foultier, M.T., Briand, G., Combre, A. & Verbist, J.F., 1986. Substances marines à visée anticancéreuse: la fucoxanthine, un caroténoïde des phéophycophytes. In 1er Congrès International sur les Plantes et Substances Naturelles d'Intérêt Therapeutique, Monastir, Tunisie, pp. 203206.Google Scholar
Geran, R.I., Greenberg, N.H., Macdonald, M.M., Schumacher, A.M. & Abbott, B.J., 1972. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemotherapy Reports, 3, 1103.Google Scholar
Guillard, R.R.L. & Ryther, J.H., 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Denotula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8, 229239.CrossRefGoogle ScholarPubMed
Helm, M.M., Hepper, B.T., Spencer, B.E. & Walne, P.R., 1974. Lugworm mortalities and a bloom of Gyrodinium aureolum Hulburt in the eastern Irish Sea, autumn 1971. Journal of the Marine Biological Association of the United Kingdom, 54, 857869.CrossRefGoogle Scholar
Iizuka, S., 1979. Maximum growth rate of natural population of a Gymnodinium red tide. In Toxic Dinoflagellates Blooms (ed. D.L., Taylor and H.H., Seliger), pp. 111114. New York: Elsevier.Google Scholar
Jenkinson, I.R., 1987. Increases in viscosity may kill fish in some blooms. In Red Tide Symposium (ed. T., Okaichiet al.), Takamatsu, Japan, Nov. 1987. New York: Elsevier Publisher. In press.Google Scholar
Jones, K.J., Ayres, P., Bullock, A.M., Roberts, R.J. & Tett, P., 1982. A red tide of Gyrodinium aureolum in sea lochs of the Firth of Clyde and associated mortality of pond-reared salmon. Journal of the Marine Biological Association of the United Kingdom, 62, 771782.CrossRefGoogle Scholar
Keller, M.D., Selvin, R.C., Claus, W. & Guillard, R.R.L., 1988. Media for the culture of oceanic ultraphytoplankton. Journal of Phycology, 23, 633638.CrossRefGoogle Scholar
Leahy, P., 1980. The effects of a dinoflagellate bloom in 1978 on the invertebrate fauna of the seashore in Dunmanus Bay, Co., Cork, Ireland. Journal of Sherkin Island, 1, 119125.Google Scholar
Ottway, B.M., Parker, M., McGrath, D. & Crowley, M., 1979. Observations of a bloom of Gyrodinium aureolum Hulburt on the south coast of Ireland, summer 1976, associated with mortalities of littoral and sublittoral organisms. Irish Fisheries Investigations (B), 18, 19.Google Scholar
Partensky, F., 1989. Stratégies de croissance et toxicité de deux Dinoflagellés responsables d'“eaux colorées”: Gyrodinium cf. aureolum et Gymnodinium nagasakiense. Thèse de l'Université Paris 6, Paris, France.Google Scholar
Partensky, F. & Sournia, A., 1986. Le Dinoflagellé Gyrodinium cf. aureolum dans le plancton de l'Atlantique nord: identification, écologie, toxicité. Cryptogamie Algologie, 7, 251275.Google Scholar
Partensky, F., Vaulot, D., Couté, A. & Sournia, A., 1988. Morphological and nuclear analysis of the bloom-forming dinoflagellates Gyrodinium cf. aureolum and Gymnodinium nagasakiense. Journal of Phycology, 24, 408415.CrossRefGoogle Scholar
Potts, G.W. & Edwards, J.M., 1987. The impact of a Gyrodinium aureolum bloom on inshore young fish populations. Journal of the Marine Biological Association of the United Kingdom, 67, 293297.CrossRefGoogle Scholar
Pouchus, Y.F. & Verbist, J.F., 1988. Aide mathématique pour le suivi biologique des extractions de nouveaux principes actifs. In 6éme Congrès International sur les Plantes Médicinales et Substances naturelles, Angers, juin 1988, in press.Google Scholar
Roberts, R.J., Bullock, A.M., Turner, M., Jones, K. & Tett, P., 1983. Mortalities of Salmo gairdneri exposed to cultures of Gyrodinium aureolum. Journal of the Marine Biological Association of the United Kingdom, 63, 741743.CrossRefGoogle Scholar
Shoemaker, R.H., Abbott, B.J., Macdonald, M.M., Mayo, J.G., Venditti, J.M. & Wolpert De Fillipes, M.K., 1983. Use of KB cell line for in vitro cytotoxicity assays. Cancer Treatments Reports, 67, 97.Google ScholarPubMed
Steidinger, K.A., 1983. A re-evaluation of toxic dinoflagellate biology and ecology. Progress in Phycological Research, 2, 147188.Google Scholar
Tangen, K., 1977. Blooms of Gyrodinium aureolum (Dinophyceae) in north European waters, accompanied by mortality in marine organisms. Sarsia, 63, 123133.CrossRefGoogle Scholar
Tangen, K. & Björnland, T., 1981. Observations on pigments and morphology of Gyrodinium aureolum Hulburt, a marine dinoflagellate containing 19′-hexanoyloxyfucoxanthin as the main carotenoid. Journal of Plankton Research, 3, 389401.CrossRefGoogle Scholar