Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T05:10:19.182Z Has data issue: false hasContentIssue false

Determination of Growth and Age of Slow Growing Brittle Stars (Echinodermata: Ophiuroidea) From Natural Growth Bands

Published online by Cambridge University Press:  11 May 2009

Corinna Dahm
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, PO 120161, D-27515 Bremerhaven, Germany. E-mail: [email protected]
Thomas Brey
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, PO 120161, D-27515 Bremerhaven, Germany. E-mail: [email protected]

Extract

Growth in ophiuroids is highly variable, and with increasing size and age of an ophiuroid specimen more and more of the innermost growth rings on the vertebral ossicles become overgrown and hence invisible. Two approaches to estimate individual age of slow growing brittle stars using the high Antarctic species Ophionotus victoriae are compared. One method interprets natural growth ring readings as size-increment data, whereas the second method compensates for growth ring overgrowth by means of an iterative corrective approach. Preconditions as well as advantages and disadvantages of both methods are discussed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, R.D., 1987. Invertebrate zoology. Philadelphia: Saunders College Publications.Google Scholar
Bray, R.D., 1985. Stereom microstructure of the vertebral ossicles of the Caribbean ophiuroid Ophiocoma echinata. In Proceedings of the fifth International Coral Reef Congress, vol. 5 (ed. Antenne du Museum National d'Historie Naturelle, Committee on coral reefs), pp. 279284. Moorea, Tahiti: Antenne Museum-EPHE.Google Scholar
Brey, T., Pearse, J., Basch, L., McClintock, J. & Slattery, M., 1995. Growth and production of Sterechnius neumayeri (Echinoidea, Echinodermata) in McMurdo Sound, Antarctica. Marine Biology, 124, 279292.CrossRefGoogle Scholar
Dahm, C., 1993. Growth, production and ecological significance of Ophiura albida and O. ophiura (Echinodermata: Ophiuroidea) in the German Bight. Marine Biology, 116, 431437.CrossRefGoogle Scholar
Dahm, C., 1996. Ökologie und Populationsdynamik antarktischer Ophiuroiden (Echinodermata). Berichte zur Polarforschung, 194, 1289.Google Scholar
Deutler, F., 1926. Über das Wachstum des Seeigelskelets. Zoologische Jahrbücher, Abteilung Anatomie und Ontogenie der Tiere, 48, 119200.Google Scholar
Ebert, T.A., 1968. Growth rates of the sea urchin Strongylocentrotus purpuratus related to food availability and spine abrasion. Ecology, 49, 10751091.CrossRefGoogle Scholar
Ebert, T.A., 1988. Calibration of natural growth lines in ossicles of two sea urchins, Strongylocentrotus purpuratus and Echinometra mathaei, using tetracycline. In Echinoderm biology (ed. R.D., Burke), pp. 435443. Rotterdam: A.A. Balkema.Google Scholar
Ebert, T.A. & Russell, M.P., 1992. Growth and mortality estimates for Red Sea urchin Strongylocentrotus franciscanus from San Nicolas Island, California. Marine Ecology Progress Series, 81, 3141.CrossRefGoogle Scholar
Ebert, T.A. & Russell, M.P., 1993. Growth and mortality of subtidal Red Sea urchins (Strongylocentrotus franciscanus) at San Nicolas Island, California, USA: problems with models. Marine Biology, 117, 7989.CrossRefGoogle Scholar
Emson, R.H. & Wilkie, I.C., 1980. Fission and autotomy in echinoderms. Oceanography and Marine Biology. Annual Review, 18, 155250.Google Scholar
Fell, H.B., Holzinger, T. & Sherraden, M., 1969. Ophiuroidea. Antarctic Map Folio Series, 11, 4243.Google Scholar
Gage, J.D., 1987. Growth of the deep-sea irregular sea urchins Echinosigra phiale and Hemiaster expergitus in the Rockall Trough (N.E. Atlantic). Marine Biology, 96, 1930.CrossRefGoogle Scholar
Gage, J.D., 1990a. Skeletal growth bands in brittle stars: microstructure and significance as age markers. Journal of the Marine Biological Association of the United Kingdom, 70, 209224.CrossRefGoogle Scholar
Gage, J.D., 1990b. Skeletal growth markers in the deep-sea brittle stars Ophiura ljungmani and Ophiomusium lymani. Marine Biology, 104, 427435.CrossRefGoogle Scholar
Gage, J.D., 1992. Natural growth bands and growth variability in the sea urchin Echinus esculentus: results from tetracycline tagging. Marine Biology, 114, 607616.CrossRefGoogle Scholar
Gage, J.D., 1995. Demographic modelling in the analysis of population dynamics of deep-sea macrobenthos. Internationale Revue der Gesamten Hydrobiologie, 80, 171185.CrossRefGoogle Scholar
Gage, J.D. & Tyler, P.A., 1985. Growth and recruitment of the deep-sea urchin Echinus affinis. Marine Biology, 90, 4153.CrossRefGoogle Scholar
Gerdes, D., Klages, M., Arntz, W.E., Herman, R.L., Galéron, J. & Hain, S., 1992. Quantitative investigations on macrobenthos communities of the southeastern Weddell Sea shelf based on multibox corer samples. Polar Biology, 12, 291301.CrossRefGoogle Scholar
Gorzula, S.J., 1977. A study of growth in the brittle-star Ophiocomina nigra. Western Naturalist, 6, 1333.Google Scholar
Heatfield, B.M., 1971. Growth of the calcareous skeleton during regeneration of spines of the sea urchin Strongylocentrotus purpuratus (Stimpson); a light and scanning electron microscope study. Journal of Morphology, 134, 5790.CrossRefGoogle Scholar
Hyman, L.H., 1955. The invertebrates: Echinodermata. New York: McGraw-Hill.Google Scholar
Jangoux, M., 1987a. Diseases of Echinodermata. I. Agents microorganisms and protistants. Diseases of Aquatic Organsims, 2, 147162.CrossRefGoogle Scholar
Jangoux, M., 1987b. Diseases of Echinodermata. II. Agents metazoans (Mesozoa to Bryozoa). Diseases of Aquatic Organsims, 2, 205234.CrossRefGoogle Scholar
Jensen, M., 1969a. Age determination of echinoids. Sarsia, 37, 4144.CrossRefGoogle Scholar
Jensen, M., 1969b. Breeding and growth of Psammechinus miliaris (Gmelin). Ophelia, 7, 6578.CrossRefGoogle Scholar
Macdonald, P.D.M. & Pitcher, T.J., 1979. Age-groups from size-frequency data: a versatile and efficient method of analyzing distribution mixtures. Journal of the Fisheries Research Board of Canada, 36, 9871001.CrossRefGoogle Scholar
Macurda, D.B., 1976. Skeletal modifications related to food capture and feeding behavior of the basketstar Astrophyton. Paleobiology, 2, 17.CrossRefGoogle Scholar
Medeiros-Bergen, D. & Ebert, T.A., 1995. Growth, fecundity and mortality rates of two intertidal brittlestars (Echinodermata: Ophiuroidea) with contrasting modes of development. Journal of Experimental Marine Biology and Ecology, 189, 4764.CrossRefGoogle Scholar
Miller, R.J. & Mann, K.H., 1973. Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. III. Energy transformations by sea urchins. Marine Biology, 18, 99114.CrossRefGoogle Scholar
Morison, G.W., 1979. Studies on the ecology of the subantarctic ophiuroid Ophionotus hexactis. MPhil thesis, University of London.Google Scholar
Pearse, J.S. & Pearse, V.B., 1975. Growth zones in the echinoid skeleton. American Zoologist, 15, 731753.CrossRefGoogle Scholar
Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T., 1986. Numerical recipes. The art of scientific computing. Cambridge: Cambridge University Press.Google Scholar
Smith, A.B., 1980. Stereom microstructure of the echinoid test. Special Papers on Palaeontology, 25, 181.Google Scholar
Stewart, B., 1995. Use of the fluorescent marker calcein for biomineralisation studies of the snake star Astrobrachion constrictum (Echinodermata: Ophiuroidea). In Echinoderm research (ed. R., Emson et al.), pp. 277282. Rotterdam: A.A. Balkema.Google Scholar
Troadec, H., 1991. Frequency demodulation on otolith numerical images for the automation of fish age estimation. Aquatic Living Resources, 4, 207219.CrossRefGoogle Scholar
Tyler, P.A., 1980. Deep-sea ophiuroids. Oceanography and Marine Biology. Annual Review, 18, 125153.Google Scholar
Ubaghs, G., 1969. General characteristics of the echinoderms. In Chemical zoology (ed. M., Florkin and B.T., Scheer), pp. 3—15. New York: Academic Press.CrossRefGoogle Scholar
Voß, J., 1988. Zoogeographie und Gemeinschaftsanalyse des Makrozoobenthos des Weddellmeeres (Antarktis). Berichte zur Polarforschung, 45, 1145.Google Scholar
Wilding, T.A. & Gage, J.D., 1995. Skeletal growth marks in the brittlestar Ophiura ophiura (Linnaeus): do they reflect a seasonal growth pattern? In Echinoderm research (ed. R., Emson et al.), pp. 283291. Rotterdam: A.A. Balkema.Google Scholar
Wilkie, I.C., 1978. Arm autotomy in brittlestars (Echinodermata: Ophiuroidea). Journal of Zoology, 186, 311330.CrossRefGoogle Scholar
Wilkie, I.C. & Emson, R.H., 1987. The tendons of Ophiocomina nigra and their role in autotomy (Echinodermata, Ophiuroidea). Zoomorphology, 107, 3344.CrossRefGoogle Scholar