Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T06:02:40.324Z Has data issue: false hasContentIssue false

Detection of High Levels of Genetic Relatedness in Rock-Populations of an Intertidal Isopod Using DNA Fingerprinting

Published online by Cambridge University Press:  11 May 2009

Stuart B. Piertney
Affiliation:
Present address: Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB9 2TN
Gary R. Carvalho
Affiliation:
Marine & Fisheries Genetics Laboratory, School of Biological Sciences, University College of Swansea, Singleton Park, Swansea, SA2 8PP.

Extract

Multi-locus DNA fingerprinting was used to determine the degree of genetic relatedness within localized assemblages of the intertidal isopod, Jaera albifrons (Crustacea: Isopoda). This isopod has marsupial development, restricted adult vagility and specific habitat preferences, which will tend to isolate groups of animals on a shore and can potentially maintain the integrity of broods after release from the mother. Total genomic DNA was extracted from six individuals from each of ten ‘rock-populations’ in the South Wales area, restricted with Rsal, Alulll and Haelll endonucleases, and probed using a (TCC)5 oligonucleotide probe. Band-sharing analysis of the fingerprint patterns indicated significantly higher genetic relatedness within rock-populations (mean within rock-population band-sharing value = 0–374 ±0–023 SE) than between (maximum between rock-population band-sharing value = 0–301 ±0033), and at a level that equates to a relatedness between individuals within rock-populations of slightly below half-sibling status. The significance of such findings, in terms of the potential for localized inbreeding and population genetic structure, is discussed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achmann, R., Heller, K.-G. & Epplen, J.T., 1992. Last-male sperm precedence in the bushcricket Poecilimon veluchianus (Orthoptera, Tettigonioidea) demonstrated by DNA fingerprinting. Molecular Ecology, 1, 4755.CrossRefGoogle Scholar
Blanchetot, A., 1991. A Musca domestica satellite sequence detects individual polymorphic regions in insect genomes. Nucleic Acids Research, 19, 929932.CrossRefGoogle Scholar
Bruford, M.W., Hanotte, O., Brookfield, J.F.Y. & Burke, T., 1992. Single locus and multi-locus DNA fingerprinting. In Molecular genetic analysis of populations (ed. A.R., Hoelzel), pp. 225269. Oxford University Press.Google Scholar
Burke, T., Dolf, G., Jeffreys, A.J. & Wolff, R., 1991. DNA fingerprinting: approaches and applications. Basel: Birkhauser Verlag.CrossRefGoogle Scholar
Carvalho, G.R., 1989. Microgeographic genetic differentiation and dispersal capacity in the intertidal isopod, ]aera albifrons Leach. In Reproduction, genetics and distribution of marine organisms (ed. J.S., Ryland and P.A., Tyler), pp. 265271. Denmark: Olsen & Olsen.Google Scholar
Carvalho, G.R., Maclean, N., Wratten, S.D., Carter, R.E. & Thurston, J.P., 1991. Differentiation of aphid clones using DNA fingerprints from individual aphids. Proceedings of the Royal Society of London B, 243, 109114.Google Scholar
Galbraith, D.A., Boag, P.T., Gibbs, H.L. & White, B.N., 1991. Sizing bands on autoradiograms: a study for precision for scoring DNA fingerprints. Electrophoresis, 12, 210220.CrossRefGoogle ScholarPubMed
Gooch, J.L. & Schopf, T.J.M., 1970. Population genetics of marine species of the phylum Ectoprocta. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 138, 138156.CrossRefGoogle Scholar
Hauser, L., Carvalho, G.R., Hughes, R.N. & Carter, R.E., 1992. Clonal structure of the introduced freshwater snail Potamopyrgus antipodarum (Prosobranchia: Hydrobiidae), as revealed by DNA fingerprinting. Proceedings of the Royal Society of London B, 249, 1925.Google ScholarPubMed
Janson, K. & Ward, R.D., 1984. Microgeographic variation in allozyme and shell characters in Littorina saxatilis Olivi (Prosobranchia: Littorinidae). Biological Journal of the Linnean Society of London, 22, 289307.CrossRefGoogle Scholar
Jeffreys, A.J., Brookfield, J.F.Y. & Semenoff, R., 1985a. Positive identification of an immigration test-case using human DNA fingerprints. Nature, London, 317, 818819.CrossRefGoogle ScholarPubMed
Jeffreys, A.J., Wilson, V. & Thein, S.L., 1985b. Hypervariable ‘minisatellite’ regions in human DNA. Nature, London, 314, 6773.CrossRefGoogle ScholarPubMed
Kimura, M. & Ohta, T., 1971. Theoretical aspects of population genetics. Princeton: Princeton University Press.Google ScholarPubMed
Knowlton, N. & Jackson, J., 1993. Inbreeding and outbreeding in marine invertebrates. In The natural history of inbreeding and outbreeding (ed. N.W., Thornhill), pp. 200249. Chicago: University of Chicago Press.Google Scholar
Lynch, M., 1988. Estimation of relatedness by DNA fingerprinting. Molecular Biology and Evolution, 5, 584599.Google ScholarPubMed
Lynch, M., 1990. The similarity index and DNA fingerprinting. Molecular Biology and Evolution, 7, 478484.Google ScholarPubMed
Miyada, C.G., Klofelt, C., Reyes, A. A., McLaughlin-Taylor, E. & Wallace, R.B., 1985. Evidence that polymorphism in the murine major histocompatibility complex may be generated by the assortment of subgene sequences. Proceedings of the National Academy of Sciences of the United States of America, 82, 28902894.CrossRefGoogle ScholarPubMed
Naish, K.-A., Carvalho, G.R. & Pitcher, T.J., 1993. The genetic structure and mierodistribution of shoals Phoxinus phoxinus, the European minnow. journal of Fish Biology, 43 (supplement A), 7589.CrossRefGoogle Scholar
Naylor, E. & Haahtela, I., 1966. Habitat preferences and interspersion of species within the super-species Jaera albifrons Leach (Crustacea: Isopoda). Journal of Animal Ecology, 35, 209216.CrossRefGoogle Scholar
Pemberton, J., Bancroft, D. & Amos, B., 1991. Behavioural ecology and DNA fingerprinting: the lab rats’ riposte. Trends in Ecology and Evolution, 6, 299300CrossRefGoogle ScholarPubMed
Pena, S.D.J., Chakraborty, R., Epplen, J.T. & Jeffreys, A.J., 1993. DNA fingerprinting: state of the science. Basel: Birkhauser Verlag.CrossRefGoogle Scholar
Piertney, S.B., 1994. Microgeographic genetic differentiation in the intertidal isopod Jaera albifrons Leach. PhD thesis, University of Wales.CrossRefGoogle Scholar
Piertney, S.B. & Carvalho, G.R., 1994. Microgeographic genetic differentiation in the intertidal isopod Jaera albifrons Leach. I. Spatial distribution of allozyme variation. Proceedings of the Royal Society of London B, 256, 195201.Google Scholar
Piertney, S.B. & Carvalho, G.R., 1995. Microgeographic genetic differentiation in the intertidal isopod Jaera albifrons Leach. II. Temporal variation in allozyme frequencies. journal of Experi-mental Marine Biology and Ecology, 188, 277288.CrossRefGoogle Scholar
Piper, W.H. & Rabenold, P.P., 1992. Use of fragment-sharing estimates from DNA fingerprinting to determine relatedness in a tropical wren. Molecular Ecology, 1, 6978.CrossRefGoogle Scholar
Reeve, H.K., Westneat, D.F., Noon, W.A., Sherman, P.W. & Aquadro, C.F., 1990. DNA ‘fingerprinting’ reveals high levels of inbreeding in colonies of the eusocial naked mole-rat. Proceedings of the National Academy of Sciences of the United States of America, 87, 24962500.CrossRefGoogle ScholarPubMed
Ryskov, A.P., Jincharadze, A.G., Prosnyak, M.I., Ivanov, P.L. & Limborska, S.A., 1988. M13 'phage DNA as a universal marker for DNA fingerprinting of animals, plants and micro-organisms. FEBS Letters, 233, 388392.CrossRefGoogle Scholar
Sjöberg, B., 1967. On the ecology of the Jaera albifrons group (Isopoda). Sarsia, 29, 321347.CrossRefGoogle Scholar
Sokal, R.R. & Rohlf, F.J., 1981. Biometry, 2nd ed. San Francisco: W.H. Freeman.Google Scholar
Stebbins, G.L., 1950. Variation and evolution in plants. New York: Columbia University Press.CrossRefGoogle Scholar
Wright, S., 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19, 395420.CrossRefGoogle Scholar
Zeh, D.W., Zeh, J.A., Coffroth, M.A. & Bermingham, E., 1992. Population-specific DNA finger-prints in a neotropical pseudoscorpion {Cordylochernes scorpioides). Heredity. London, 69, 201208.CrossRefGoogle Scholar