Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T03:59:32.550Z Has data issue: false hasContentIssue false

A description of the testate amoeba Ovulina parva gen. nov., sp. nov. from coastal marine sediments

Published online by Cambridge University Press:  11 May 2009

O. Roger Anderson
Affiliation:
Biological Oceanography, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA.
Andrew Rogerson
Affiliation:
Department of Chemistry and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
Fiona Hannah
Affiliation:
University Marine Biological Station Millport, Isle of Cumbrae, Scotland, KA28 OEG

Extract

A testate amoeba with organic test, isolated from sediments in the Firth of Clyde, Scotland, has been assigned to a new genus as Ovulina parva (Protista: Filosea) based on its unique light microscopic and fine structural morphology. The hyaline to amber test is ovate (~15×ll µm) with a terminal aperture that is either unadorned or with a shallow collar. Hyaline, long-tapering, pointed, sometimes branched, pseudopodia emerge directly from the aperture or from the periphery of a thin web of hyaline cytoplasm. The nucleus (~5 μm) with a central nucleolus (~2 μm) is located at the posterior of the cytoplasm. The fine structure of the test, examined by scanning and transmission electron microscopy, shows it is entirely organic with an irregular to granular surface. Scattered elongate pits (~1 μm long) without perforations are distributed irregularly on the surface. Ectoplasm is distributed within a fine fibrillar envelope lining the test. The endoplasm is ovoid and contains anteriorly located vacuoles enclosing densely-staining bodies with chromatin-like filaments which appear to be bacterial prey in late stages of digestion. This is further corroborated by light microscopic observations that bacteria are cleared from the surface of the culture dish within the circumference of the pseudopodia. The mitochondria (0.5–1.0 μm) have tubular cristae and some are located in the vicinity of peroxisomes (~0.5 μm) surrounded by a single membrane and with a finely granular matrix. Minimum doubling time in our cultures was 28.4 h, and the testate amoeba exhibits remarkable salinity tolerance growing in media ranging from 0 to 35% salinity.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, O.R., 1987. Fine structure of a silica-biomineralizing testate amoeba, Netzelia tuberculata. Journal of Protozoology, 34, 302309.CrossRefGoogle Scholar
Anderson, O.R. & Cowling, A.J., 1994. The fine structure of the euglyphid testate amoeba Assulina muscorum (Rhizopoda: Euglyphidae) with observations of growth rate in culture, morphometrics, and siliceous scale deposition. European Journal of Protistology, 30, 451–161.CrossRefGoogle Scholar
Anderson, O.R. & Rogerson, A., 1995. Annual abundances and growth potential of Gymnamoebae in the Hudson Estuary With Comparative Data from the Firth of Clyde. European Journal of Protistology, 31, 223233.CrossRefGoogle Scholar
Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. & Thingstad, F., 1983. The Ecological Role of Water-Column Microbes in the Sea. Marine Ecology Progress Series, 10, 257263.CrossRefGoogle Scholar
Bamforth, S., 1985. Ecology. In An illustrated guide to the Protozoa (ed. J.J., Lee et al.), pp. 815. Lawrence, Kansas: Society of Protozoologists.Google Scholar
Belar, K., 1921. Untersuchungen über Thecamöben der Chlamydophrys-Gruppe. Archiv für Protistenkunde, 43, 287354.Google Scholar
Beyens, L., Chardez, D. & Debaere, D., 1991. Ecology of aquatic testate amoebae in coastal lowlands of Devon Island (NWT, Canadian high Arctic), with a description of a new species Difflugia ovalisina. Archiv für Protistenkunde, 140, 2333.CrossRefGoogle Scholar
Bovee, E.C., 1960. Studies of feeding behavior of amebas. I. Ingestion of thecate rhizopods and flagellates by verrucosid amebas, particularly Thecamoeba sphaeronucleolus. Journal of Protozoology, 7, 5560.CrossRefGoogle Scholar
Bovee, E.C., 1985. Class Filosea Leidy, 1879. In An illustrated guide to the Protozoa (ed. J.J., Lee et al.), pp. 228245. Lawrence, Kansas: Society of Protozoologists.Google Scholar
Capriulo, G.M., 1990. Feeding-related ecology of marine protozoa. In Ecology of marine Protozoa (ed. G., Capriulo), pp. 186259. New York: Oxford University Press.Google Scholar
Chardez, D., 1977. Thécamoebiens du mésopsammon des plages de la Mer du Nord. Revue Vervietoise d'Histoire Naturelle, 34, 119.Google Scholar
Chardez, D., 1985a. Observations on the distribution of thecamoebans in a lake. Ada Protozoologica, 24, 217223.Google Scholar
Chardez, D., 1985b. Protozoaires Prédateurs de thécamoebiens. Protistologica, 21, 187194.Google Scholar
Chardez, D., 1987. Contribution to the study of testate amoebae in lacustrian settlings. Acta Protozoologica, 26, 5962.Google Scholar
Chardez, D., 1990. Notes sur Cyphoderia perlucidus Beyens et Chardez, 1986 et sur le périphyton des plantes aquatiques. Acta Protozoologica, 29, 97102.Google Scholar
Chardez, D. & Thomas, R., 1980. Thécamoebiens du mésopsammon des plages de lacanau et leporge-oceans (Gironde, France) (Protozoa; Rhizopoda, testacea). Ada Protozoologica, 19, 277285.Google Scholar
Clarholm, M., 1981. Protozoan grazing of bacteria in soil - impact and importance. Microbial Ecology, 7, 343350.CrossRefGoogle ScholarPubMed
Clarholm, M., 1985. Interactions of bacteria protozoa and plants leading to mineralization of soil nitrogen. Soil Biology and Biochemistry, 17, 181188.CrossRefGoogle Scholar
Cowling, A.J., 1986. Culture methods and observations of Corythion dubium and Euglypha rotunda (Protozoa: Rhizopoda) isolated from maritime Antarctic moss peats. Protistologica, 22, 181— 191.Google Scholar
Cowling, A.J., 1994. Protozoan distribution and adaptation. In Soil Protozoa (ed. J.F., Darbyshire), pp. 542. Wallingford: Centre for Agriculture and Biosciences International.Google Scholar
Craib, J.S., 1965. A sampler for taking short undisturbed marine cores. Journal Conseil Permanent International Pour l'Exploration dela Mer, 30, 3439.CrossRefGoogle Scholar
Fenchel, T., 1987. Ecology of Protozoa. Madison, Wisconsin: Science Techical Publishers.Google Scholar
Golemansky, V.G., 1970. Thecamoebiens (Rhizopoda, Testacea) nouveaux des eaux souterraines littorales de la Mer Noire. Acta Protozoologica, 8, 4147.Google Scholar
Golemansky, V.G., 1981. Three new thecamoeba protozoa (rhizopodea) psammon of the marine littoral zone. Acta Protozoologica, 20, 115120.Google Scholar
Golemansky, V.G., 1991. Thécamoebiens mésopsammiques (rhizopoda: Arcellinida, Gromida et Monothalamida) du sublittoral marin de l'Atlantique dans la région de Roscoff (France). Archiv für Protistenkunde, 140, 3543.CrossRefGoogle Scholar
Golemansky, V.G. & Couteaux, M.-M., 1982. Étude en microscopie électronique à balayage de huit especes de thécamoebiens interstitiels du supralittoral marin. Protistologica, 18, 473480.Google Scholar
Heal, O.W., 1962. The abundance and micro-distribution of testate amoebae (Rhizopoda: Testacea) in Sphagnum. Oikos, 13, 35–7.CrossRefGoogle Scholar
Lousier, J.D. & Parkinson, D., 1984. Annual production dynamics and production ecology of testacea (Protozoa, Rhizopoda) in an aspen woodland soil. Soil Biology and Biochemistry, 16, 103114.CrossRefGoogle Scholar
Netzel, H., 1983. Formation of the thecal wall of polyphase secretion in the testate amoeba Netzelia oviformis (Rhizopodea, Lobosia). Archiv für Protistenkunde, 127, 351381.CrossRefGoogle Scholar
Ogden, C.G. & Coûteaux, M.-M., 1989. Interstitial marine rhizopods (Protozoa) from littoral sands on the east coast of England. European Journal of Protistology, 24, 281290.CrossRefGoogle ScholarPubMed
Ogden, C.G. & Hedley, R.H., 1980. An atlas of freshwater testate amoebae. Oxford University Press.CrossRefGoogle Scholar
Page, F.C., 1966. Cryptodifflugia opercidata n. sp. (Rhizopodea: Arcellinida, Cryptodifflugiidae) and status of the genus Cryptodifflugia. Transactions of the American Microscopical Society, 85, 506515.CrossRefGoogle Scholar
Page, F.C., 1983. Marine Gymnamoebae. Cambridge: Institute of Terrestrial Ecology, [p. 8.]Google Scholar
Patterson, D.J., Nygaard, K., Steinberg, G. & Turley, C.M., 1993. Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. Journal of the Marine Biological Association of the United Kingdom, 73, 6795.CrossRefGoogle Scholar
Penard, E., 1909. Sur quelques rhizopodes des mousses. Archiv für Protistenkunde, 17, 258296.Google Scholar
Rogerson, A. & Laybourn-Parry, J., 1992. The abundance of marine naked amoebae in the water column of the Clyde Estuary. Estnarine, Coastal and Shelf Science, 34, 187196.CrossRefGoogle Scholar
Schönborn, W., 1989. The tophonetic analysis as a method to elucidate the phylogeny of testate amoebae (Protozoa, Testacealobosia and Testaceafilosia). Archiv für Protistenkunde, 137, 223245.CrossRefGoogle Scholar
Smith, H.G., 1992. Distribution and ecology of the testate rhizopod fauna of the continental Antarctic zone. Polar Biology, 12, 629634.CrossRefGoogle Scholar
Stout, J.D., 1980. The role of protozoa in nutrient cycling and energy flow. Advances in Microbial Ecology, 4, 150.CrossRefGoogle Scholar
Sudzuki, M., 1979. Psammobiont Rhizopoda and Actinopoda from marine beaches of Japan. Acta Protozoologica, 18, 293304.Google Scholar
Wanner, M., 1991. Studies on the ecology of testate amoebae (Protozoa: Rhizopoda) in forests of southern Germany. Archiv für Protistenkunde, 140, 237288.CrossRefGoogle Scholar