Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T14:33:38.512Z Has data issue: false hasContentIssue false

Description of Oncholaimus moanae sp. nov. (Nematoda: Oncholaimidae), with notes on feeding ecology based on isotopic and fatty acid composition

Published online by Cambridge University Press:  08 September 2008

Daniel Leduc*
Affiliation:
Portobello Marine Laboratory, University of Otago, PO Box 8, Dunedin 9048, New Zealand
*
Correspondence should be addressed to: Daniel Leduc, Portobello Marine Laboratory, University of Otago, PO Box 8, Dunedin 9048, New Zealand email: [email protected]

Abstract

A new free-living marine nematode species, Oncholaimus moanae sp. nov., is described from intertidal fine sand in southern New Zealand. Oncholaimus moanae sp. nov. can be distinguished from other species of the genus by the presence of a pre-cloacal papilla bearing four pairs of short, stout spines, a post-cloacal papilla, long (>70 μm) spicules, and a demanian system with two openings situated laterally at level of uvette. The δ13C signature of O. moanae sp. nov. suggests that benthic microalgae are the main carbon source for this species, but an elevated δ15N signature suggests predatory feeding habits. The fatty acid composition of O. moanae sp. nov. is rich in highly unsaturated fatty acids, which are likely to originate from heterotrophic protists (e.g. ciliates). The data obtained in this study suggest, for the first time, that marine nematodes can be a high quality food source (i.e. rich in highly unsaturated fatty acids) to predators. Large nematodes living near or at the sediment surface, in particular, may represent an important trophic link between heterotrophic protists and higher trophic levels in marine sediments.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abu Hatab, M.A. and Gaugler, R. (1999) Lipids of in vivo and in vitro cultured Heterorhabditis bacteriophora. Biological Control 15, 113118.CrossRefGoogle Scholar
Ackman, R.G., Tocher, C.S. and McLachlan, J. (1968) Marine phytoplankter fatty acids. Journal of the Fisheries Research Board of Canada 25, 16031620.CrossRefGoogle Scholar
Albrecht, N. and Vennell, R. (2007) Tides in two constricted New Zealand lagoons. New Zealand Journal of Marine and Freshwater Research 41, 103118.CrossRefGoogle Scholar
Allgen, C. (1928) Freilebende Nematoden von den Campbell- und Staten- inseln. Nyt Magazin for Naturvidenskaberne 66, 249309.Google Scholar
Allgen, C. (1932) Weitere Beitrage zur Kenntnis der marinen Nematodenfauna der Campbellinsel. Nyt Magazin for Naturvidenskaberne 70, 97198.Google Scholar
Allgen, C. (1959) Freeliving marine nematodes. In Odhner, N.H. (ed.) Further zoological results of the Swedish Antarctic Expedition 1901–1903. Volume 5, No. 2. Stockholm: Kungl Boktryckeriet P.A. Norstedt & Soner, pp. 1295.Google Scholar
Bishop, D.G. (1976) Lipids and lipid metabolism. In Rechigl, M. (ed.) Carbohydrates, lipids, and accessory growth factors. New York: Karger, pp. 7498.Google Scholar
Bligh, E.G. and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911917.CrossRefGoogle ScholarPubMed
Boechat, I.G., Schuran, S. and Adrian, R. (2005) Supplementation of the protist Chilomonas paramecium with a highly unsaturated fatty acid enhances its nutritional quality for the rotifer Keratella quadrata. Journal of Plankton Research 27, 663670.CrossRefGoogle Scholar
Bolla, R. (1980) Nematode energy metabolism. In Zuckermann, B.M. (ed.) Nematodes as biological models, Volume 2. New York: Academic Press, pp. 165192.Google Scholar
Bouwman, L.A., Romeyn, K., Kremer, D.R. and Vanes, F.B. (1984) Occurrence and feeding biology of some nematode species in estuarine aufwuchscommunities. Cahiers de Biologie Marine 25, 287303.Google Scholar
Brock, T.J., Browse, J. and Watts, J.L. (2007) Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics 176, 865875.CrossRefGoogle ScholarPubMed
Caramujo, M.J., Boschker, H.T.S. and Admirall, W. (2008) Fatty acid profiles of algae mark the development and composition of harpacticoid copepods. Freshwater Biology 53, 7790.CrossRefGoogle Scholar
Carman, K.R. and Fry, B. (2002) Small-sample methods for δ13C and δ15N analysis of the diets of marsh meiofaunal species using natural-abundance and tracer-addition isotope techniques. Marine Ecology Progress Series 240, 8592.CrossRefGoogle Scholar
Coull, B.C. (1999) Role of meiofauna in estuarine soft-bottom habitats. Australian Journal of Ecology 24, 327343.CrossRefGoogle Scholar
Ditlevsen, H. (1921) Papers from Dr. Th. Mortensen's Pacific Expedition 1914–16. III. Marine free-living nematodes from the Auckland and Campbell Islands. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kobenhavn 73, 132.Google Scholar
Ditlevsen, H. (1930) Papers from Dr. Th. Mortensen's Pacific Expedition 1914–16. Marine free-living nematodes from New Zealand. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kobenhavn 87, 201242.Google Scholar
Findlay, R.H., Trexler, M.B., Guckert, J.B. and White, D.C. (1990) Laboratory study of disturbance in marine sediments—response of a microbial community. Marine Ecology Progress Series 62, 121133.CrossRefGoogle Scholar
Gerlach, S.A. and Riemann, F. (1974) The Bremerhaven checklist of aquatic nematodes. A catalogue of Nematoda Adenophorea excluding the Dorylaimida. Veroeffentlichungen des Instituts für Meeresforschung in Bremerhaven Supplement 4, Part 2, pp. 405736.Google Scholar
Hamels, I., Moens, T., Mutylaert, K. and Vyverman, W. (2001) Trophic interactions between ciliates and nematodes from an intertidal flat. Aquatic Microbial Ecology 26, 6172.CrossRefGoogle Scholar
Hamerlynck, O. and Vanreusel, A. (1993) Mesacanthion diplechma (Nematoda: Thoracostomopsidae), a link to higher trophic levels? Journal of the Marine Biological Association of the United Kingdom 73, 453456.CrossRefGoogle Scholar
Huang, Y. and Zhang, Z.N. (2006) New species of free-living marine nematodes from the Yellow Sea, China. Journal of the Marine Biological Association of the United Kingdom 86, 271281.CrossRefGoogle Scholar
Kanazawa, A. (1985) Essential fatty acids and lipid requirements of fish. In Cowsley, C.B., Mackie, A.M. and Bell, J.G. (eds) Nutrition and feeding in fish. New York: Academic Press, pp. 281298.Google Scholar
Kharlamenko, V.I., Kiyashko, S.I., Imbs, A.B. and Vyshkvartzev, D.I. (2001) Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses. Marine Ecology Progress Series 220, 103117.CrossRefGoogle Scholar
Langdon, C.J. and Waldock, M.J. (1981) The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. Journal of the Marine Biological Association of the United Kingdom 61, 431448.CrossRefGoogle Scholar
Leduc, D., Probert, P.K., Frew, R.D. and Hurd, C.L. (2006) Macroinvertebrate diet in intertidal seagrass and sandflat communities: a study using C, N, and S stable isotopes. New Zealand Journal of Marine and Freshwater Research 40, 615629.CrossRefGoogle Scholar
Lower, W.R., Willet, J.D. and Hansen, E.L. (1970) Selection for adaptation to increased temperatures in free-living nematodes. 2. Some lipid differences in Panagrellus redivivus. Comparative Biochemistry and Physiology 34, 473479.CrossRefGoogle ScholarPubMed
McCutchan, J.H., Lewis, W.M., Kendall, C. and McGrath, C.C. (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378390.CrossRefGoogle Scholar
Meyers, S.P., Hopper, B.E. and Cefalu, R. (1970) Ecological investigations of marine nematode Metoncholaimus scissus. Marine Biology 6, 4347.CrossRefGoogle Scholar
Meziane, T. and Tsuchiya, M. (2000) Fatty acids as tracers of organic matter in the sediment and food web of a mangrove/intertidal flat ecosystem, Okinawa, Japan. Marine Ecology Progress Series 200, 4957.CrossRefGoogle Scholar
Moens, T., Bouillon, S. and Gallucci, F. (2005) Dual stable isotope abundances unravel trophic position of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom 85, 14011407.CrossRefGoogle Scholar
Moens, T., Luyten, C., Middelburg, J.J., Herman, P.M.J. and Vincx, M. (2002) Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes. Marine Ecology Progress Series 234, 127137.CrossRefGoogle Scholar
Moens, T., Verbeeck, L. and Vincx, M. (1999) Feeding biology of a predatory and a facultatively predatory nematode (Enoploides longispiculosus and Adoncholaimus fuscus). Marine Biology 134, 585593.CrossRefGoogle Scholar
Moens, T. and Vincx, M. (1997) Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom 77, 211227.CrossRefGoogle Scholar
Nanton, D.A. and Castell, J.D. (1999) The effects of temperature and dietary fatty acids on the fatty acid composition of harpacticoid copepods, for use as a live food for marine fish larvae. Aquaculture 175, 167181.CrossRefGoogle Scholar
Nelson, A.L. and Coull, B.C. (1989) Selection of meiobenthic prey by juvenile spot (Pisces)—an experimental study. Marine Ecology Progress Series 53, 5157.CrossRefGoogle Scholar
Norsker, N.H. and Stottrup, J.G. (1994) The importance of dietary HUFAs for fecundity and HUFA content in the harpacticoid, Tisbe holothuriae Humes. Aquaculture 125, 155166.CrossRefGoogle Scholar
Nyssen, F., Brey, T., Dauby, P. and Graeve, M. (2005) Trophic position of Antarctic amphipods—enhanced analysis by a 2-dimensional biomarker assay. Marine Ecology Progress Series 300, 135145.CrossRefGoogle Scholar
Phillips, N.W. (1984) Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bulletin of Marine Science 35, 283298.Google Scholar
Post, D.M. (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703718.CrossRefGoogle Scholar
Read, G.H.L. (1981) The response of Penaeus indicus (Crustacea: Penaeidae) to purified and compunded diets of varying fatty acid composition. Aquaculture 24, 245256.CrossRefGoogle Scholar
Riemann, F. (1988) Nematoda. In Higgins, R.P. and Thiel, H. (eds) Introduction to the study of meiofauna. Washington: Smithsonian Institution Press, pp. 293299.Google Scholar
Riera, P. and Hubas, C. (2003) Trophic ecology of nematodes from various microhabitats of the Roscoff Aber Bay (France): importance of stranded macroalgae evidenced through δ13C and δ15N. Marine Ecology Progress Series 260, 151159.CrossRefGoogle Scholar
Riera, P., Richard, P., Gremare, A. and Blanchard, G. (1996) Food sources of intertidal nematodes in the Bay of Marennes-Oleron (France), as determined by dual isotope analysis. Marine Ecology Progress Series 142, 303309.CrossRefGoogle Scholar
Rothstein, M. & Gotz, T. (1968) Biosynthesis of fatty acids in the free-living nematode, Turbatrix aceti. Archives of Biochemistry and Biophysics 126, 131140.CrossRefGoogle ScholarPubMed
Ruess, L., Haggblom, M.M., Langel, R. and Scheu, S. (2004) Nitrogen isotope ratios and fatty acid composition as indicators of animal diets in below ground systems. Oecologia 139, 336346.CrossRefGoogle Scholar
Sargent, J.R., Parkes, R.J., Mueller-Harvey, I. and Henderson, R.J. (1987) Lipids biomarkers in marine ecology. In Sleigh, M. (ed.) Microbes in the sea. Chichester: Ellis Horwood, pp. 119138.Google Scholar
Schlechtriem, C., Tocher, D.R., Dick, J.R. and Becker, K. (2004) Incorporation and metabolism of fatty acids by desaturation and elongation in the nematode, Panagrellus redivivus. Nematology 6, 783795.Google Scholar
Vander Zanden, M.J. and Rasmussen, J.B. (2001) Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46, 20612066.CrossRefGoogle Scholar
Veloza, A.J., Chu, F.L. and Tang, K.W. (2006) Trophic modification of essential fatty acids by heterotrophic protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Marine Biology 148, 779788.CrossRefGoogle Scholar
Volkman, J.K., Johns, R.B., Gillan, F.T., Perry, G.J. and Bavor, H.J. (1980) Microbial lipids of an intertidal sediment. 1. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 44, 11331143.CrossRefGoogle Scholar
Wantanabe, T., Arakawa, T., Kitajima, C., Fukusho, K. and Fujita, S. (1978) Nutritional quality of living feed from the viewpoint of essential fatty acids for fish. Bulletin of the Japanese Society for Science and Fisheries 44, 12231227.CrossRefGoogle Scholar
Wantanabe, T., Kitajima, C. and Fujita, S. (1983) Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34, 115143.CrossRefGoogle Scholar
Williams, J.L. and Biesiot, P.M. (2004) Lipids and fatty acids of the benthic marine harpacticoid copepod Heteropsyllus nunni Coull during diapause: a contrast to pelagic copepods. Marine Biology 144, 335344.CrossRefGoogle Scholar