Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-18T13:34:02.129Z Has data issue: false hasContentIssue false

Demersal assemblages in two trawl fishing lanes located on the Baronie Seamount (Central Western Mediterranean)

Published online by Cambridge University Press:  02 June 2010

A. Sabatini*
Affiliation:
Dipartimento di Biologia Animale ed Ecologia—DBAE, Università di Cagliari, via T. Fiorelli 1, 09126 Cagliari, Italy
M.C. Follesa
Affiliation:
Dipartimento di Biologia Animale ed Ecologia—DBAE, Università di Cagliari, via T. Fiorelli 1, 09126 Cagliari, Italy
I. Locci
Affiliation:
Dipartimento di Biologia Animale ed Ecologia—DBAE, Università di Cagliari, via T. Fiorelli 1, 09126 Cagliari, Italy
G. Matta
Affiliation:
Dipartimento di Biologia Animale ed Ecologia—DBAE, Università di Cagliari, via T. Fiorelli 1, 09126 Cagliari, Italy
F. Palmas
Affiliation:
Dipartimento di Biologia Animale ed Ecologia—DBAE, Università di Cagliari, via T. Fiorelli 1, 09126 Cagliari, Italy
A.A. Pendugiu
Affiliation:
Dipartimento di Biologia Animale ed Ecologia—DBAE, Università di Cagliari, via T. Fiorelli 1, 09126 Cagliari, Italy
P. Pesci
Affiliation:
Dipartimento di Biologia Animale ed Ecologia—DBAE, Università di Cagliari, via T. Fiorelli 1, 09126 Cagliari, Italy
A. Cau
Affiliation:
Dipartimento di Biologia Animale ed Ecologia—DBAE, Università di Cagliari, via T. Fiorelli 1, 09126 Cagliari, Italy
*
Correspondence should be addressed to: A. Sabatini, Viale T. Fiorelli 1, 09126 Cagliari, Italy email: [email protected].

Abstract

This work focuses on the species associations of the Baronie Seamount (north-eastern Sardinia, Italy), according to variations in depth and time of day. The aim was to highlight the potential vertical movements of the species and to compare these results to existing data from a submarine canyon. Twenty-two samples were taken at different depths and times along two trawl lines over the seamount. A total of 94 species were caught; among these, 48 bony fish, 9 cartilaginous fish, 13 molluscs and 24 crustaceans were selected for analysis. Cluster analysis showed 3 groups in which both depth and time of day play an important role in grouping. Nine species showed some daily and nocturnal movement, probably linked to trophic requirements. The daily movements according to size and sex of the shrimps Aristaeomorpha foliacea and Aristeus antennatus were also studied. For these two populations, the analysis showed an uneven distribution and the diel cycle appears to involve only the females. These species seem to adapt their life cycle to the geomorphology of the sea bottom. The diurnal movements from the base of the seamount to the edge of the continental shelf increase the range of the species distribution. In fact, the seamount, due to its geomorphological conformation, offers these species the opportunity to very quickly span a considerable range of depths. These movements are known to occur in the continental shelf and slope, but in the seamount they are broadened and can be studied more easily.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abelló, P., Carbonell, A. and Torres, P. (2002) Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Scientia Marina 66, 183198.CrossRefGoogle Scholar
Bellagamba, M., Napoleone, G. and Tramontana, M. (1979) Batimetria e morfologia delle aree settentrionale e centro-meridionale del bacino della Sardegna (Mar Tirreno). Atti del convegno scientifico nazionale, Progetto Finalizzato Oceanografia e Fondi marini, Roma. Volume 2, pp. 739751.Google Scholar
Blaber, S.J.M. and Bulman, C.M. (1987) Diets of fishes of the upper continental slope of eastern Tasmania: content, calorific values, dietary overlap and trophic relationships. Marine Biology 95, 345357.CrossRefGoogle Scholar
Blanchard, F. (2001) The effect of fishing on demersal fish community dynamics: an hypothesis. ICES Journal of Marine Science 58, 711718.CrossRefGoogle Scholar
Bombace, G. (1975) Considerazioni sulla distribuzione delle popolazioni di livello batiale con particolare riferimento a quelle bentonectoniche. Pubblicazioni Stazione Zoologica Napoli 39, 721.Google Scholar
Bray, J.R. and Curtis, J.T. (1957) An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27, 325349.CrossRefGoogle Scholar
Canals, M., Danovaro, R., Heussner, S., Lykousis, V., Puig, P., Trincardi, F., Calafat, A.M., Durrieu de Madron, X., Palanques, A. and Sanchez-Vidal, A. (2009) Cascades in Mediterranean submarine grand canyons. Oceanography 22, 2643.CrossRefGoogle Scholar
Carney, R.S. (2005) Zonation of deep biota on continental margins. Oceanography and Marine Biology: an Annual Review 43, 211278.Google Scholar
Cartes, J.E. and Sardà, F. (1993) Zonation of deep-sea decapod fauna in the Catalan Sea (Western Mediterranean). Marine Ecology Progress Series 94, 2734.CrossRefGoogle Scholar
Cartes, J.E., Company, J.B. and Maynou, F. (1994) Deep-water decapod crustacean communities in the north-western Mediterranean: influence of submarine canyons and season. Marine Biology 120, 221229.CrossRefGoogle Scholar
Cartes, J.E., Maynou, F., Moranta, J., Massutí, E., Lloris, D. and Morales-Nin, B. (2004) Pattern of bathymetric distribution among deep-sea fauna at local spatial scale: comparison of minland vs. insular areas. Progress in Oceanography 60, 2945.CrossRefGoogle Scholar
Cartes, J.E., Papiol, V. and Guijarro, B. (2008) The feeding and diet of the deep-sea shrimp Aristeus antennatus off the Balearic Islands (Western Mediterranean): influence of environmental factors and relationship with the biological cycle. Progress in Oceanography 79, 3754.CrossRefGoogle Scholar
Cau, A. and Deiana, A.M. (1982) Sulle variazioni di cattura del gambero rosso “Aristaeomorpha foliacea” in relazione alla sua eco-etologia. Bollettino dei Musei e degli Istituti Biologici dell'Università di Genova 50, 145150.Google Scholar
Clarke, K.R. (1993) Non-parametric multivariate analyses of change in community structure. Australian Journal of Ecology 18, 117143.CrossRefGoogle Scholar
Clarke, K.R. and Warwick, R.M. (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth, UK: Plymouth Marine Laboratory.Google Scholar
Clarke, K.R. and Gorley, N.R. (2006) Primer v6: user manual/tutorial. Plymouth, UK: Primer-E.Google Scholar
Company, J.B., Maiorano, P., Tselepides, A., Politou, C-Y., Plaity, W., Rotllant, G. and Sardà, F. (2004) Deep-sea decapod crustaceans in the western and central Mediterranean Sea: preliminary aspects of species distribution, biomass and population structure. Scientia Marina 68, 7386.CrossRefGoogle Scholar
Company, J.B., Puig, P., Sardà, F., Palanques, A., Latasa, M. and Scharek, R. (2008) Climate influence on deep sea populations. PLoS ONE 3(1):e1431, doi:10.1371/journal.pone.0001431.CrossRefGoogle ScholarPubMed
Conover, W.J. (1980) Practical nonparametric statistics. New York: John Wiley & Sons.Google Scholar
D'Onghia, G., Politou, C-Y., Bozzano, A., Lloris, D., Rotllant, G., Sion, L. and Mastrotaro, F. (2004) Deep-water fish assemblages in the Mediterranean Sea. Scientia Marina 68, 8799.CrossRefGoogle Scholar
Field, J.G., Clarke, K.R. and Warwick, R.M. (1982) A practical strategy for analysing multispecies distribution patterns. Marine Ecology Progress Series 8, 3752.CrossRefGoogle Scholar
Koslow, J.A. (1997) Seamounts and the ecology of deep-sea fisheries. American Scientist 85, 168176.Google Scholar
Koslow, J.A., Gowlett-Holmes, K., Lowry, J., O'Hara, T., Poore, G. and Williams, A. (2001) The seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling. Marine Ecology Progress Series 213, 111125.CrossRefGoogle Scholar
Madurell, T., Cartes, J.E. and Labropoulou, M. (2004) Changes in the structure of fish assemblages in a bathyal site of the Ionian Sea (eastern Mediterranean). Fishery Research 66, 245260.CrossRefGoogle Scholar
Massutí, E., Gordon, J.D.M., Moranta, J., Swan, S.C., Stefanescu, C. and Merrett, N.R. (2004) Mediterranean and Atlantic deep-sea fish assemblages: differences in biomass composition and size-related structure. Scientia Marina 68, 101115.CrossRefGoogle Scholar
Matarrese, A., D'Onghia, G., Deflorio, M., Panza, M. and Costantino, G. (1995) Recenti acquisizioni sulla distribuzione batimetrica di Aristaemorpha foliacea e Aristeus antennatus (Crustacea, Decapoda) nel Mar Ionio. Biologia Marina Mediterranea 2, 299300.Google Scholar
Maurin, C. (1960) Les crevettes profondes du littoral français de la Méditerranée répartition selon la profondeur. Notes Biométriques. Rapports et Procès-Verbaux des Réunions CIESM 15, 147154.Google Scholar
Moranta, J., Stefanescu, C., Massutí, E., Morales-Nin, B. and Lloris, D. (1998) Fish community structure and depth-related trends on the continental slope of the Balearic Islands (Algerian basin, western Mediterranean). Marine Ecology Progress Series 171, 247259.CrossRefGoogle Scholar
Moranta, J., Quetglas, A., Massutí, E., Guijarro, B., Hidalgo, M. and Diaz, P. (2008) Spatio-temporal variations in deep-sea demersal communities off the Balearic Islands (Western Mediterranean). Journal of Marine Systems 71, 346366.CrossRefGoogle Scholar
Orrù, P. and Ulzega, A. (1988) Ricerche geomorfologiche sul canyon Gonone (Sardegna Orientale). Bulletin de la Société Royale des Sciences de Liège 57, 415427.Google Scholar
Preciado, I., Velasco, F. and Olaso, I. (2008) The role of pelagic fish as forage for the demersal fish community in the Southern Bay of Biscay. Journal of Marine Systems 72, 407417.CrossRefGoogle Scholar
Relini, G.Bertrand, J. and Zamboni, A. (1999) Synthesis of the knowledge on bottom fishery resources in central Mediterranean (Italy and Corsica). Biologia Marina Mediterranea 6 (Supplement 1) 868 pp.Google Scholar
Rogers, A.D. (1994) The biology of seamounts. Advances in Marine Biology 30, 305350.CrossRefGoogle Scholar
Rowe, G.T. (1971) Observations in bottom currents and epibenthic populations in Hatteras Submarine Canyon. Deep-Sea Research 18, 569581.Google Scholar
Sabatini, A., Follesa, M.C., Locci, I., Pendugiu, A.A., Pesci, P. and Cau, A. (2007) Assemblages in submarine canyon: influence of depth and time. Hydrobiologia 580, 265271.CrossRefGoogle Scholar
Sardà, F., Maynou, F. and Tallò, L.I. (1997) Seasonal and spatial mobility patterns of rose shrimp (Aristeus antennatus, Risso 1816) in the western Mediterranean: result of a long-term study. Marine Ecology Progress Series 159, 133141.CrossRefGoogle Scholar
Serena, F. (2005) Field identification guide to the sharks and rays of the Mediterranean and Black Sea. FAO Species Identification Guide for Fishery Purposes. Rome: FAO, 97 pp.Google Scholar
Shepard, F.P., Marshall, N.F. and McLoughlin, P.A. (1974) Currents in submarine canyons. Deep-Sea Research 21, 691706.Google Scholar
Somerfield, P.J. and Clarke, K.R. (1997) A comparison of some methods commonly used for the collection of sublittoral sediments and their associated fauna. Marine Environmental Research 43, 145156.CrossRefGoogle Scholar
Tobar, R. and Sardà, F. (1992) Annual and diel light intensity cycle as a predictive factor in deep-water fisheries for the prawn Aristeus antennatus, Risso 1816. Fisheries Research 15, 179196.CrossRefGoogle Scholar
Tortonese, E. (1970) Osteichthyes. (Pesci ossei). Volume X. Bologna: Calderini, 565 pp.Google Scholar
Tortonese, E. (1975) Osteichthyes. (Pesci ossei). Volume XI. Bologna: Calderini, 636 pp.Google Scholar
Tudela, S., Sardà, F., Maynou, F. and Demestre, M. (2003) Influence of submarine canyons on the distribution of the deep-water shrimp, Aristeus antennatus (Risso, 1816) in the NW Mediterranean. Crustaceana 76, 217225.Google Scholar
WWF/IUCN (2004). The Mediterranean deep-sea ecosystems: an overview of their diversity, structure, functioning and anthropogenic impacts, with a proposal for conservation. IUCN, Málaga and WWF, Rome.Google Scholar