Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T14:52:30.512Z Has data issue: false hasContentIssue false

The Crystallography and Possible Origin of Barium Sulphate in Deep Sea Rhizopod Protists (Xenophyophorea)

Published online by Cambridge University Press:  11 May 2009

J.D. Hopwood
Affiliation:
School of Chemistry, University of Bath, Bath, BA2 7AY.
S. Mann
Affiliation:
School of Chemistry, University of Bath, Bath, BA2 7AY.
A.J. Gooday
Affiliation:
Southampton Oceanography Centre, Empress Dock, Southampton, SO14 3ZH

Extract

Xenophyophores are a group of giant deep sea protists characterized by intracellular barium sulphate (BaSO4) crystals. X-ray diffraction, electron diffraction and electron microscopy studies have been performed on barium sulphate crystals from three xenophyophore species (Aschemonella ramuliformis, Reticulammina labyrinthica, Galatheammina lamina) obtained at bathyal and abyssal depths in the north-eastern Atlantic. Two populations of crystals were observed. The first were tablets, ~2μm in length and rhombic or hexagonal in outline. In both cases, the tabular face was of index (100). The second population consisted of much smaller particles (<0·5 μm) of poor crystallinity. A comparison of the larger xenophyophore crystals with synthetically grown crystals indicated that the former probably grew at low supersaturation (S<25) in solutions of low to moderate ionic strength (I<l·0 M). Some preliminary observations of the cellular organisation of A. ramuliformis are reported. The protoplasm is multinucleate and characterized by what seems to be a system of extracellular lacunae formed by imaginations of the cell wall. Similar features have been observed in the deep sea foraminiferan Rhizammina algaeformis. Possible origins of the BaSO4 crystals and the taxonomic relationship between xenophyophores and certain foraminiferans are discussed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrhenius, G., 1963. Pelagic sediments. In The sea, vol. 3 (ed. M.N., Hill), pp. 655727. New York: Wiley-Interscience Publishers.Google Scholar
Arrhenius, G. & Bonatti, E., 1965. Neptunism and vulcanism in the ocean. Progress in Oceanography, 3, 722.CrossRefGoogle Scholar
Benton, W.B., Collins, I.R., Grimsey, I.M., Parkinson, G.M. & Rodger, S.A., 1993. Nucleation, growth and inhibition of barium sulphate-controlled modification with organic and inorganic additives. The Royal Society of Chemistry, Faraday Discussions, 95, 281297.CrossRefGoogle Scholar
Bertram, M.A. & Cowen, J.P., 1994. Testate rhizopod growth and mineral deposition on experimental substrates from Cross Seamount. Deep-Sea Research, 41, 575601.CrossRefGoogle Scholar
Bishop, J.K.B., 1988. The barite-opal-organic carbon association in oceanic particulate matter. Nature, London, 332, 341343.CrossRefGoogle Scholar
Black, S.N., Bromley, L.A., Cottier, D., Davey, R.J., Dobbs, B. & Rour, J.E., 1991. Interactions at the organic/inorganic interface: binding motifs for phosphonates at the surface of barite crystals. Journal of the Chemical Society. Faraday Transactions, 87, 34093414.CrossRefGoogle Scholar
Bronnimann, P. & Whittaker, J.E., 1988a. The trochamminaceous test and the taxonomic criteria used in the classification of the superfamily Trochamminacea. Abhandlungen Geologischen Bundesantalt, 41, 2339.Google Scholar
Brönnimann, P. & Whittaker, J.E., 1988b. The Trochamminacea of the ‘Discovery’ Reports. London: British Museum (Natural History).Google Scholar
Cartwright, N.G., Gooday, A.J. & Jones, A.R., 1989. The morphology, internal organisation, and taxonomic position of Rhizammina algaeformis Brady, a large, agglutinated, deep-sea foraminifer. Journal of Foraminiferal Research, 19, 115125.CrossRefGoogle Scholar
Chow, T.J. & Goldberg, E.D., 1960. On the marine chemistry of barium. Geochimica et Cosmochimica Acta, 20, 192198.CrossRefGoogle Scholar
Church, T., 1970. Marine barite. Ann Arbor: University Microfilms International.Google Scholar
Coombs, T.L. & George, S.G., 1977. Mechanisms of immobilisation and detoxification of metals in marine organisms. In Biology of benthic organisms (ed. B.F., Keegan et al.), pp. 179187. Oxford: Pergamon Press.Google Scholar
Dehairs, F., Baeyens, W. & Goeyens, L., 1992b. Accumulation of suspended barite at mesopelagic depths and export production in the Southern Ocean. Science, New York, 258, 13321335.CrossRefGoogle ScholarPubMed
Dehairs, F., Chesselet, R. & Jedwab, J., 1980. Discrete suspended particles of barite and the barium cycle in the open ocean. Earth and Planetary Science Letters, 49, 528550.CrossRefGoogle Scholar
Dehairs, F., Goeyens, L., Stroobants, N. & Mathot, S., 1992a. Elemental composition of suspended matter in the Scotia-Weddell Confluence area during spring and summer 1988 (EPOS Leg 2). Polar Biology, 12, 2533.CrossRefGoogle Scholar
Dehairs, F., Lambert, C.E., Chesselet, R. & Risler, N., 1987. The biological production of marine suspended barite and the barium cycle in the western Mediterranean Sea. Biogeochemistry, 4, 119139.CrossRefGoogle Scholar
Dehairs, F., Stroobants, N. & Goeyens, L., 1991. Suspended barite as a tracer of biological activity in the Southern Ocean. Marine Chemistry, 35, 399410.CrossRefGoogle Scholar
Dymond, J., Suess, E. & Lyle, M., 1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 7, 163181.CrossRefGoogle Scholar
Espig, H. & Neels, H., 1967. Precipitation of barium, strontium and lead sulphates. Kristall und Technik, 2, 1967, 401413.CrossRefGoogle Scholar
Fenchel, T. & Finlay, B., 1984. Geotaxis in the ciliated protozoan Loxodes. Journal of Experimental Biology, 110, 1733.CrossRefGoogle Scholar
Finlay, B.J., Hetherington, N.B. & Davison, W., 1983. Active biological participation in lacustrine barium chemistry. Geochimica et Cosmochimica Acta, 47, 13251329.CrossRefGoogle Scholar
Gooday, A.J., 1990. Recent deep-sea agglutinated Foraminifera: a brief review. In Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated Foraminifera (ed. C., Hemleben et al.), pp. 271304. The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Gooday, A.J., Bett, B.J. & Pratt, D.N., 1993. Direct observation of episodic growth in an abyssal xenophyophore (Protista). Deep-Sea Research, 40, 21312143.CrossRefGoogle Scholar
Gooday, A.J. & Nott, J.A., 1982. Intracellular barite crystals in two xenophyophores, Aschemonella ramuliformis and Galatheammina sp. (Protozoa: Rhizopoda) with comments on the taxonomy of A. ramuliformis. Journal of the Marine Biological Association of the United Kingdom, 62, 595605.CrossRefGoogle Scholar
Gooday, A.J., Nott, J. A., Davis, D. & Mann, S., 1995. Apatite particles in the test wall of the large agglutinated foraminifer Bathysiphon major (Protista). Journal of the Marine Biological Association of the United Kingdom, 75, 469481.CrossRefGoogle Scholar
Gooday, A.J. & Tendal, O.S., 1988. New xenophyophores (Protista) from the bathyal and abyssal north-east Atlantic Ocean. Journal of Natural History, 22, 413434.CrossRefGoogle Scholar
Gooday, A.J. & Tendal, O.S., in press. Phylum Granuloreticulosea, class Xenophyophorea. In Illustrated guide to the Protozoa (ed. J.J., Lee et al.). Lawrence, Kansas: Allen Press.Google Scholar
Icely, J.D. & Nott, J.A., 1980. Accumulations of copper within the ‘hepatopancreatic’ caeca of Corophium volutator (Crustacea: Amphipoda). Marine Biology, 57, 193199.CrossRefGoogle Scholar
Lea, D. & Boyle, E., 1989. Barium content of benthic Foraminifera controlled by bottom-water composition. Nature, London, 338, 751753.CrossRefGoogle Scholar
Lea, D. & Boyle, E., 1992. Barium in planktonic Foraminifera. Geochimica et Cosmochimica Acta, 55, 33213331.CrossRefGoogle Scholar
Levin, L.A., 1994. Paleoecology and ecology of xenophyophores. Palaios, 9, 3241.CrossRefGoogle Scholar
Levin, L.A. & Gooday, A.J., 1992. Possible roles for xenophyophores in deep-sea carbon cycling. In Deep-sea food chains and the global carbon cycle (ed. G.T., Rowe and V., Pariente), pp. 93104. The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Levin, L.A. & Thomas, C.L., 1988. The ecology of xenophyophores (Protista) on eastern Pacific seamounts. Deep-Sea Research, 35, 20032027.CrossRefGoogle Scholar
Levine, N.D. et al., 1980. A newly revised classification of the Protozoa. Journal of Protozoology, 27, 3758.CrossRefGoogle ScholarPubMed
Lowenstam, H.A., 1981. Minerals formed by organisms. Science, New York, 211, 11261131.CrossRefGoogle ScholarPubMed
Paytan, A., Kastner, M., Martin, E.E., Macdougall, J.D. & Herbert, T., 1993. Marine barite as a monitor of seawater strontium isotope composition. Nature, London, 366, 445449.CrossRefGoogle Scholar
Riemann, F., Tendal, O.S. & Gingele, F.X., 1993. Reticulammina antarctica nov. spec. (Xenophyophora, Protista) from the Weddell Sea, and aspects of the nutrition of xenophyophores. Polar Biology, 13, 543547.CrossRefGoogle Scholar
Schröter, K., Läuchli, A. & Sievers, A., 1975. Mikroanalytische Indentifikation von Bariumsulfat-Kristallen in den Statolithen der Rhizoid Chara fragilis, Desv. Planta, 122, 213225.CrossRefGoogle Scholar
Schulze, F.E., 1907. Die xenophyophoren, eine besondere Gruppe der Rhizopoden. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition, auf dem Dampfer ‘Valdivia', 1898–1899, 11, 155.Google Scholar
Schulze, F.E. & Thierfelder, H., 1905. Über Baryumsulfat in Meerestieren (Xenophyophora F.E. Sch.). Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, 1905, 23.Google Scholar
Shellis, R.P., 1988. A microcomputer program to evaluate the saturation of complex solutions with respect to biominerals. CABIOS, 4, 373379.Google ScholarPubMed
Sievers, A. & Volkmann, D., 1979. Growth movements directed by gravity. In Encyclopedia of plant physiology. New series. Vol. 7. Physiology of movements (ed. W., Haupt and M.E., Feinleib), pp. 567572. Berlin: Springer-Verlag.Google Scholar
Simkiss, K., 1979. Metal ions in cells. Endeavour, 3, 26.CrossRefGoogle ScholarPubMed
Stroobants, N., Dehairs, F., Goeyens, L., Vanderheijden, N. & Grieken, R. Van, 1991. Barite formation in the Southern Ocean water column. Marine Chemistry, 35, 411421.CrossRefGoogle Scholar
Sutton, C., 1987. Desmids, the algae with a taste for heavy metal. New Scientist, 113, 45.Google Scholar
Tendal, O.S., 1972. A monograph of the Xenophyophoria (Rhizopodea, Protozoa). Galathea Report, 12, 7103.Google Scholar
Tendal, O.S., 1994. Protozoa, Xenophyophorea granuloreticulosa:Psammina zonaria sp. nov. from the West Pacific and some aspects of the growth of xenophyophores. In ‘Musortor’ cruises reports. Vol. 12. Résultats des Campagnes ‘Musorstom’ (ed. A., Crosnier), pp. 4954. Paris: Éditions du Museum. [Memoires du Museum National d'Histoire Naturelle, vol. 161.]Google Scholar
Tendal, O.S., & Gooday, A.J., 1981. Xenophyophoria (Rhizopoda, Protozoa) in bottom photographs from the bathyal and abyssal NE Atlantic. Oceanologica Acta, 4, 415422.Google Scholar
Tendal, O.S. & Hessler, R.R., 1977. An introduction to the biology and systematics of Komokiacea (Textulariina, Foraminiferida). Galathea Report, 14, 165194.Google Scholar
Wilcock, J.R., Perry, C.C., Williams, R.J.P. & Brook, A.J., 1989. Biological minerals formed from strontium and barium sulphates. II. Crystallography and control of mineral morphology in desmids. Proceedings of the Royal Society B, 238, 203221.Google Scholar