Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T08:38:40.411Z Has data issue: false hasContentIssue false

Coupling of phytoplankton community structure to nutrients, ciliates and copepods in the Gulf of Gabès (south Ionian Sea, Tunisia)

Published online by Cambridge University Press:  05 November 2009

Zaher Drira
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie, Unité de Recherche UR/05ES05 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5–BP 1171–CP 3000 Sfax, Tunisie
Asma Hamza
Affiliation:
Institut National des Sciences et Technologie de la Mer, Centre de Sfax BP 1035 Sfax 3018Tunisie
Malika Bel Hassen
Affiliation:
Institut National des Sciences et Technologie de la Mer, 2025 Salammbô Tunis, Tunisie
Habib Ayadi
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie, Unité de Recherche UR/05ES05 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5–BP 1171–CP 3000 Sfax, Tunisie
Abderrahmen Bouain
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie, Unité de Recherche UR/05ES05 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5–BP 1171–CP 3000 Sfax, Tunisie
Lotfi Aleya*
Affiliation:
Université de Franche-Comté, Laboratoire de Chrono-environnement, UMR CNRS 6249- Place Leclerc, F-25030 Besançon cedex, France
*
Correspondence should be addressed to: L. Aleya, Université de Franche-Comté, Laboratoire de Chrono-environnement, UMR CNRS 6249- Place Leclerc, F-25030 Besançon cedex, France email: [email protected]

Abstract

The summer spatial distribution of the phytoplankton community in the Gulf of Gabès (Tunisia, eastern Mediterranean Sea), together with environmental factors, were studied during a preliminary study conducted in July 2005 aboard the RV ‘Hannibal’. The phytoplankton community, which showed a decrease in concentration along a coastal–open sea gradient, was dominated by Dictyochophyceae (41%) followed by Dinophyceae (25%), Bacillariophyceae (16%), Cyanobacteriae (17%) and Euglenophyceae (1%). The phytoplankton found along the coast was dominated by opportunistic species (e.g. Dictyocha fibula) associated with high nutrient availability. In the open sea, phytoplankton development seemed influenced by Atlantic hydrodynamics. In addition, the Gulf of Gabès is characterized by an oligotrophic status with a summer stratification that impacted on species composition especially in off-shore areas. The coupling of phytoplankton dynamics to nutrients, ciliates and copepods showed the potential role played by ciliates not only as predators of phytoplankton but also as prey for filter-feeding copepods accounting for the increased fisheries productivity of the Gulf of Gabès.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abid, O., Sellami-Kammoun, A., Ayadi, H., Drira, Z., Bouain, A. and Aleya, L. (2008) Biochemical adaptation of phytoplankton to salinity and nutrient gradients in a coastal solar saltern, Tunisia. Estuarine, Coastal and Shelf Science 80, 391400.CrossRefGoogle Scholar
Agawin, N.S.R., Duarte, C.M. and Agusti, S. (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography 45, 591600.CrossRefGoogle Scholar
Aleya, L. (1989) Seasonal couplings between adenyl nucleotides and photosynthetic activity of size-fractionated phytoplankton in a eutrophic lake. European Journal of Protistology 24, 381391.CrossRefGoogle Scholar
Aleya, L. (1991) The concept of ecological succession applied to an eutrophic lake through the seasonal coupling of diversity index and several parameters. Archiv für Hydrobiologie 120, 327343.CrossRefGoogle Scholar
Aleya, L. (1992) The seasonal succession of phytoplankton in a eutrophic lake through the coupling of biochemical composition of particulates, metabolic parameters and environmental conditions. Archiv für Hydrobiologie 124, 6988.CrossRefGoogle Scholar
(APHA) American Public Health Association (1992) Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.Google Scholar
Astraldi, M., Gasparini, G.P., Vetrano, A. and Vignudelli, A. (2002) Hydrodynamics characteristics and interannual variability of water masses in the central Mediterranean: a sensitivity test for long-term changes in the Mediterranean Sea. Deep-Sea Research 49, 661680.CrossRefGoogle Scholar
Atkinson, A. (1996) Sub-Antarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey population. Marine Ecology Progress Series 130, 8596.CrossRefGoogle Scholar
Ayadi, H., Elloumi, J., Guermazi, W., Bouain, A., Hammami, M., Giraudoux, P. and Aleya, L. (2008) Fatty acid composition in relation to the micro-organisms in the Sfax solar saltern, Tunisia. Acta Protozoologica 47, 189203.Google Scholar
Balech, E. (1959) Tintinnoinea del Mediterraneo. Trabajos del Instituto Espanol de Oceanografia 28, 188.Google Scholar
Balech, E. (1988) Los dinoflagelados del Atlantico sudoccidental. Instituto Español de Oceanografia, Publicaciones Especiales, 309 pp.Google Scholar
Bel Hassen, M., Drira, Z., Hamza, A., Ayadi, H., Akrout, F., Messaoudi, S., Issaoui, H., Aleya, L. and Bouaïn, A. (2009a) Phytoplankton dynamics related to water mass properties in the Gulf of Gabès: ecological implications. Journal of Marine Systems 75, 216226.CrossRefGoogle Scholar
Bel Hassen, M., Drira, Z., Hamza, A., Ayadi, H., Akrout, F., Messaoudi, S., Issaoui, H., Aleya, L. and Bouaïn, A. (2009b) Plankton-pigment signatures and their relationship to spring–summer stratification in the South-eastern Mediterranean. Estuarine, Coastal and Shelf Science 83, 296306.CrossRefGoogle Scholar
Béranger, K., Mortier, L., Gasparini, G.P., Gervasio, L., Astraldi, M. and Crepon, M. (2004) The dynamics of the Sicily Strait: a comprehensive study from observations and models. Deep-Sea Research 51, 411440.Google Scholar
Bosc, E., Bricaud, A. and Antoine, D. (2004) Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations. Global Biogeochemical Cycles, 18, GB1005, 10.1029/ 2003GB002034.Google Scholar
Bourrelly, P. (1985) Les Algues d'Eau Douce. Initiation à la Systèmatique. Tome II. Les Algues bleues et rouges. Les Euglénins, Peridiniens et Cryptomonadines. Paris: Société Nouvelle des Editions Boubée.Google Scholar
Bradford-Grieve, J.M., Markhaseva, E.L., Rocha, C.E.F. and Abiahy, B. (1999) South Atlantic Zooplankton. Leiden, The Netherlands: Backhuys Publishers, pp. 8691098.Google Scholar
Bustillos-Guzman, J., Claustre, H. and Marty, J.C. (1995) Specific phytoplankton signatures and their relationship to hydrographic conditions in the coastal northwestern Mediterranean Sea. Marine Ecology Progress Series 124, 247258.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N. (2001) PRIMER v5: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
Corsini, G., Grasso, R. and Cipollini, P. (2002) Regional bio-optical algorithms for the Alboran Sea from a reflectance model and in situ data. Geophysical Research Letters 29, 129.CrossRefGoogle Scholar
D'Ortenzio, F., Marullo, S., Ragni, M., Ribera d'Alcalà, M. and Santoleri, R. (2002) Validation of empirical SeaWiFS algorithms for chlorophyll a retrieval in the Mediterranean Sea: a case study for oligotrophic seas. Remote Sensing Environment 82, 7994.CrossRefGoogle Scholar
Danilov, R.A. and Ekelund, N.G.A. (2001) Comparative studies on the usefulness of seven ecological indices for the marine coastal monitoring close to the shore on the Swedish East Coast. Environmental Monitoring Assessment 66, 265279.CrossRefGoogle Scholar
Dodge, J.D. (1985) Atlas of dinoflagellates. A scanning electron microscope survey. London: Ferrand Press.Google Scholar
Drira, Z., Belhassen, M., Ayadi, H., Hamza, A., Zarrad, R., Bouaïn, A. and Aleya, L. (2009) Copepod community structure related to environmental factors from a summer cruise in the Gulf of Gabès (Tunisia, Eastern Mediterranean Sea). Journal of the Marine Biological Association of the United Kingdom, 113, doi:10.1017/S0025315409990403.Google Scholar
Duarte, C.M., Agusti, S. and Agawin, N.S.R. (2000) Response of a Mediterranean phytoplankton community to increased nutrient inputs: a mesocosm experiment. Marine Ecology Progress Series 195, 6170.CrossRefGoogle Scholar
Eker, E. and Kideys, A.E. (2000) Weekly variations in phytoplankton structure of a harbour in Mersin Bay (north-eastern Mediterranean). Turkish Journal of Botany 24, 1324.Google Scholar
Fanuko, N. (1989) Possible relation between a bloom of Distephanus speculum (Silicoflagellata) and anoxia in bottom waters in the Northern Adriatic, 1983. Journal of Plankton Research 11, 7584.CrossRefGoogle Scholar
Fogg, G.E. (1991) The phytoplanktonic ways of life. New Phytology 118, 191232.CrossRefGoogle ScholarPubMed
Gitelson, A., Karnieli, A., Goldman, N., Yacobi, Y.Z. and Mayo, M. (1996) Chlorophyll estimation in the southeastern Mediterranean using CZCS images: adaptation of an algorithm and its validation. Journal of Marine Systems 9, 283290.CrossRefGoogle Scholar
Gomez, F. and Gorsky, G. (2003) Annual microphytoplankton cycles in the Villefranche Bay, Ligurian Sea, NW Mediterranean. Journal of Plankton Research 25, 323339.CrossRefGoogle Scholar
Gomez, F., Echevarrià, F., Garcia, C.M., Prieto, L., Ruiz, J., Reul, A., Jiménez-Gomez, F. and Valera, M. (2000) Microplankton distribution in the Strait of Gibraltar: coupling between organisms and hydrodynamic structures. Journal of Plankton Research 22, 603617.CrossRefGoogle Scholar
Hamza-Chaffai, A., Amiard-Triquet, C. and El Abed, A. (1997) Metallothionein-like protein, is it an efficient biomarker of metal contamination? A case study based on fish from the Tunisian coast. Archives of Environmental Contamination and Toxicology 33, 5362.CrossRefGoogle ScholarPubMed
Hamza-Chaffai, A., Cosson, R.P., Amiard-Triquet, C. and El Abed, A. (1995) Physicochemical forms of storage of metals (Cd, Cu and Zn) and metallothionein like proteins in fish from the Tunisian coast, ecotoxicological consequences. Comparative Biochemistry and Physiology 111, 329341.Google Scholar
Hamza-Chaffai, A., Roméo, M. and El Abed, A. (1996) Heavy metals in different fishes from the middle eastern coast of Tunisia. Bulletin of Environmental Contamination and Toxicology 56, 766773.CrossRefGoogle ScholarPubMed
Hannachi, I., Drira, Z., Bel Hassen, M., Hamza, A., Ayadi, H., Bouain, A. and Aleya, L. (2009) Abundance and biomass of the ciliate community during a spring cruise in the Gulf of Gabès (East Mediterranean Sea, Tunisia). Acta Protozoologica 47, 209305.Google Scholar
Hartmann, H.J., Taleb, H., Aleya, L. and Lair, N. (1993) Predation on ciliates by the suspension-feeding calanoid copepod Acanthodidptomus denticornis. Canadian Journal of Fisheries and Aquatic Sciences 50, 13821393.CrossRefGoogle Scholar
Hernandez-Becerril, D.U. and Bravo-Sierra, E. (2001) Planktonic silicoflagellates (Dictyochophyceae) from the Mexican Pacific Ocean. Botanica Marina 44, 417423.CrossRefGoogle Scholar
Heurt, B., Zohary, T., Krom, M.D., Fauzi, R., Mantoura, C., Pitta, P., Psarra, S., Rassoulzadegan, F., Tanaka, T. and Thingstad, T.F. (2005) Response of East Mediterranean surface water to Saharan dust: on-board microcosm experiment and field observations. Deep-Sea Research II 52, 30243040.Google Scholar
Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U. and Zohary, T. (1999) Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403424.CrossRefGoogle Scholar
Huber-Pestalozzi, G. (1968) Das phytoplankton des Susswassars, 1. Halfte, Cryptophyceae, Chloromonadophyceae, Dinophyceae. Stuttgart: E. Schweizerbart Verlag.Google Scholar
Kofoid, C.A. and Campbell, A.S. (1929) A conspectus of the marine and freshwater Ciliata belonging to the suborder Tintinnoinea, with descriptions of new species principally from the Agassiz expedition to the eastern tropical Pacific 1904–1905. University of California Publications in Zoology 34, 1403.Google Scholar
Kofoid, C.A. and Campbell, A.S. (1939) The Tintinnoinea of the eastern tropical Pacific. Bulletin of the Museum of Comparative Zoology at Harvard College 84, 1473.Google Scholar
Kress, N., Thingstad, T.F., Pitta, P., Psarra, S., Tanaka, T., Zohary, T., Groom, S., Herut, B., Mantoura, R.F.C., Polychronaki, T., Rassoulzadegan, F. and Spyres, G. (2005) Effect of P and N addition to oligotrophic Eastern Mediterranean waters influenced by near-shore waters: a microcosm experiment. Deep-Sea Research II 52, 30543073.CrossRefGoogle Scholar
Krom, M.D., Brenner, S., Kress, N. and Gordon, L.I. (1991) Phosphorus limitation of primary productivity in the E. Mediterranean Sea. Limnology and Oceanography 36, 424432.CrossRefGoogle Scholar
Lampert, W., Fleckner, W., Rai, H. and Taylor, B. (1986) Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography 31, 478490.CrossRefGoogle Scholar
Livingston, R.J. (2001) Eutrophication processes in coastal systems. Boca Raton, FL: CRC Press.Google Scholar
Lohman, H. (1908) Untersuchungen zur Feststellung des Vollständigen Gehaltes des Meeres an Plankton. Wissenschaftliche Meeresuntersuchungen 10, 131170.Google Scholar
Matsuoka, K., Joyce, L.B., Kotani, Y. and Matsuyama, Y. (2003) Modern dinoflagellate cysts in hypertrophic costal waters of Tokyo Bay, Japan. Journal of Plankton Research 25, 1641–1470.CrossRefGoogle Scholar
Menden-Deuer, S. and Lessard, E.J. (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45, 569579.CrossRefGoogle Scholar
Onodera, J. and Takahashi, K. (2005) Silicoflagellate fluxes and environmental variations in the northwestern North Pacific during December 1997–May 2000. Deep-Sea Research I 52, 371388.CrossRefGoogle Scholar
Oren, A. (2005) A hundred years of Dunaliella research: 1905–2005. Saline Systems 1, 114.CrossRefGoogle ScholarPubMed
(OECD) Organization for Economic Cooperation and Development. (1982) Eutrophication of waters: monitoring, assessment and control. Paris: Environment Directorate, OECD.Google Scholar
Paerl, H.W. (1997) Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as ‘new’ nitrogen and other nutrient sources. Limnology and Oceanography 42, 11541165.CrossRefGoogle Scholar
Paerl, H.W., Valdes, L.M., Pinckney, J.L., Piehler, M.F., Dyble, J. and Moisander, P.H. (2003) Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. Bioscience 53, 953964.CrossRefGoogle Scholar
Pérez, M.T., Dolan, J.R. and Fukai, E. (1997) Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepods. Marine Ecology Progress Series 155, 89101.CrossRefGoogle Scholar
Pielou, E.C. (1975) Ecological diversity. New York: Wiley Interscience.Google Scholar
Pinckney, J.L., Richardson, T.L., Millie, D.F. and Paerl, H.W. (2001) Application of photopigment biomarkers for quantifying microalgal community composition and in situ growth rates. Organic Geochemistry 32, 585595.CrossRefGoogle Scholar
Raven, J.A. (1998) Small is beautiful: the picophytoplankton. Functional Ecology 12, 503513.CrossRefGoogle Scholar
Reynolds, C.S. (1997) Vegetation processes in the pelagic: a model for ecosystem theory. Excellence in Ecology, 9, Ecology Institute Oldendorf, Germany.Google Scholar
Rodriguez, J., Blanco, J.M., Jimenez-Gomez, F., Echevarria, F., Gil, J., Rodriguez, V., Ruiz, J., Bautista, B. and Guerrero, F. (1998) Patterns in the size structure of the phytoplankton community in the deep fluorescence maximum of the Alboran Sea (southwestern Mediterranean). Deep-Sea Research I 45, 15771593.CrossRefGoogle Scholar
Rose, M. (1933) Copépodes pélagigues. Faume de la France, 26. Paris: Lechevalier, 368 pp.Google Scholar
Shannon, C.E. and Weaver, G. (1949) The mathematical theory of communication. Urbana, Chicago, IL: University of Illinois Press.Google Scholar
Sin, Y. and Wetzel, R.L. (2000) Seasonal variations of size-fractionated phytoplankton along the salinity gradient in the York River estuary, Virginia (USA). Journal of Plankton Research 22, 19451960.CrossRefGoogle Scholar
Smaoui-Damak, W., Hamza-Chaffai, A., Berthet, B. and Amiard, J.C. (2003). Preliminary study of the clam Ruditapes decussatus exposed in situ to metal contamination and originating from the Gulf of Gabès, Tunisia. Bulletin of Environmental Contamination and Toxicology 7, 961970.CrossRefGoogle Scholar
Smaoui-Damak, W., Rebai, T., Berthet, B. and Hamza-Chaffai, A. (2006) Does cadmium pollution affect reproduction in the clam Ruditapes decussates? A one-year case study. Comparative Biochemistry and Physiology, Part C, 143, 252261.Google Scholar
Ter-Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 11671179.CrossRefGoogle Scholar
Thingstad, T.F., Zweifel, U.L. and Rassoulzadegan, F. (1998) Limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean. Limnology and Oceanography 43, 3344.CrossRefGoogle Scholar
Thingstad, T.F., Krom, M.D., Mantoura, R.F.C., Flaten, G.A.F., Groom, S., Herut, B., Kress, N., Law, C.S., Pasternak, A., Pitta, P., Psarra, S., Rassoulzadegan, F., Tanaka, T., Tselepides, A., Wassmann, P., Woodward, E.M.S., Riser, C.W., Zodiatis, G. and Zohary, T. (2005) Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science 309, 10681071.CrossRefGoogle ScholarPubMed
Tomas, C.R., Hasle, G.R., Steidinger, A.K., Syvertsen, E.E. and Tangen, C. (1996) Identifying marine diatoms and dinoflagellates. London: Academic Press.Google Scholar
Tregouboff, G. and Rose, M. (1957) Manuel de planctonologie méditerranéenne. Volume II. Paris: CNRS.Google Scholar
Utermöhl, H. (1958) Zur Vervollkommung der quantitativen Phytoplankton Methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte. Limnologie 9, 138.Google Scholar
Verlecar, X.N., Desai, S.R., Sarkar, A. and Dalal, S.G. (2006) Biological indicators in relation to coastal pollution along Karnataka coast, India. Water Research 40, 33043312.CrossRefGoogle ScholarPubMed
Vitousek, P.M. and Howarth, R.W. (1991) Nitrogen limitation on land and in the sea—how can it occur? Biogeochemistry 13, 87115.CrossRefGoogle Scholar
Vollenweider, R.A., Marchetti, R. and Viviani, R. (1992) Marine coastal eutrophication. The response of marine transitional systems to human impact: problems and perspectives for restoration. Science of the Total Environment Supplement 1992. Amsterdam, Netherlands: Elsevier Science.Google Scholar
Zairi, M. and Rouis, M.J. (1999) Impacts environnementaux du stockage du phosphogypse à Sfax (Tunisie). Bulletin des Laboratoires des Ponts et Chaussées 219, 2940.Google Scholar