Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T17:43:09.990Z Has data issue: false hasContentIssue false

Correlation between cypris age, settlement rate and anatomical development in Lernaeodiscus porcellanae (Cirripedia: Rhizocephala)

Published online by Cambridge University Press:  11 May 2009

J. T. Høeg
Affiliation:
Institute of Cell Biology and Anatomy, The Zoological Institutes, University of Copenhagen, 15 Universitetsparken, DK-2100 Copenhagen, Denmark
L. E. Ritchie
Affiliation:
Deceased

Abstract

The correlation between settlement rate, cypris age and anatomical maturation on the ultrastructural level was studied in female cyprids of Lernaeodiscus porcellanae, a rhizocephalan parasite of the porcelain crab Petrolisthes cabrilloi. There is no settlement on crabs until the cyprids are at least 2–3 days old, and maximum settlement activity is only reached 5 days after the moult from nauplius to cyprid (at 15 °C). Thereafter the settlement rate decreases again, possibly due to depletion of energy reserves in the non-feeding cyprids. Ultrastructural investigations show that the female cyprids cannot metamorphose into a kentrogon until 2–3 days after the moult from nauplius to cyprid, which explains the absence of settlement in young cyprids. Competence to metamorphose depends on changes in the cement glands, the epidermis and the antennules. The cypris moult cycle is arrested at an early stage and moult activity is only resumed after settlement. This ensures that the cyprids will not initiate metamorphosis while free-swimming.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Crisp, D. J. & Meadows, P. S., 1963. Adsorbed layers: the stimulus to settle in barnacles. Proceedings of the Royal Society (B), 158, 364387.Google Scholar
Darwin, C, 1851. A Monograph of the Sub-class Cirripedia, vol. I. London: Ray Society.CrossRefGoogle Scholar
Darwin, C, 1854. A Monograph of the Sub-class Cirripedia, vol. n. London: Ray Society.Google Scholar
Delage, Y., 1884. Evolution de la Sacculine (Sacculina carcini Thomps.), crustacé endoparasite de l'ordre nouveau des kentrogonides. Archives de zoologie expérimentale et générale, 2, 417736.Google Scholar
Freeman, J. A. & Costlow, J. D., 1983. The cyprid molt cycle and its hormonal control in the barnacle Balanus amphitrite. Journal of Crustacean Biology, 3, 173182.CrossRefGoogle Scholar
Gomez, E. D., Faulkner, D. J., Newman, W. A. & Ireland, C, 1973. Juvenile hormone mimics: effect on cirriped crustacean metamorphosis. Science, New York, 179, 813814.CrossRefGoogle ScholarPubMed
Høeg, J. T., 1984 a. Size and settling behaviour in male and female cypris larvae of the parasitic barnacle Sacculina carcini Thompson (Crustacea: Cirripedia: Rhizocephala). Journal of Experimental Marine Biology and Ecology, 76, 145156.CrossRefGoogle Scholar
Høeg, J. T., 1984 b. A culture system for rearing marine invertebrate larvae and its application to larvae of rhizocephalan barnacles. Journal of Experimental Marine Biology and Ecology, 84, 167172.CrossRefGoogle Scholar
Høeg, J. T., 1985 a. Cypris settlement, kentrogon formation and host invasion in the parasitic barnacle Lernaeodiscus porcellanae M¨ller (Crustacea: Cirripedia: Rhizocephala). Acta zoologica, 66, 145.CrossRefGoogle Scholar
Høeg, J. T., 1985 b. Male cypris settlement in Clistosaccuspaguri Lilljeborg (Crustacea: Cirripedia: Rhizocephala). Journal of Experimental Marine Biology and Ecology, 89, 221235.CrossRefGoogle Scholar
Høeg, J. T. & Ritchie, L. E., 1985. Male cypris settlement and its effects on juvenile development in Lernaeodiscus porcellanae Müller (Crustacea: Cirripedia: Rhizocephala). Journal of Experi-mental Marine Biology and Ecology, 87, 112.CrossRefGoogle Scholar
Kalt, M. R. & Tandler, B., 1971. A study of early amphibian embryos for electron microscopy. Journal of Ultrastructure Research, 36, 633645.CrossRefGoogle ScholarPubMed
Lucas, M. I., Walker, G., Holland, D. L. & Crisp, D. J., 1979. An energy budget for the free-swimming and metamorphosing larvae of Balanus balanoides (Crustacea: Cirripedia). Marine Biology, 55, 221229.CrossRefGoogle Scholar
Ritchie, L. E. & Høeg, J. T., 1981. The life history of Lernaeodiscus porcellanae (Cirripedia: Rhizocephala) and co-evolution with its porcellanid host. Journal of Crustacean Biology, 1, 334347.CrossRefGoogle Scholar
Rubiliani, C, Turquier, Y. & Payen, G. G., 1982. Recherche sur l'ontogenese des rhizocéphales. I. Les stades précoces de la phase endoparasitaire chez Sacculina carcini Thompson. Cahiers de biologie marine, 23, 287297.Google Scholar
Tighe-Ford, D. J., 1977. Effects of juvenile hormone analogues on larval metamorphosis in the barnacle Elminius modestus Darwin (Crustacea: Cirripedia). Journal of Experimental Marine Biology and Ecology, 26, 163176.CrossRefGoogle Scholar
Veillet, A., 1947. Métamorphose de la larve cypris du rhizocéphales Septosaccus cuenoti Dub. parasite du pagure Diogenes pugilator. Compte rendu hebdomadaire des seances de l'Academie des sciences, 224, 957959.Google Scholar
Veilett, A., 1952. Métamorphose de la larve cypris du rhizocéphales Gemmosaccus sulcatusLilljeborg. Compte rendu hebdomadaire des séances de l'Academie des sciences, 234, 13101312.Google Scholar
Walker, G., 1985. The cypris larvae of Sacculina carcini Thompson (Crustacea: Cirripedia: Rhizocephala). Journal of Experimental Marine Biology and Ecology, 93, 131145.CrossRefGoogle Scholar
Walley, L. J., 1969. Studies on the larval structure and metamorphosis of Balanus balanoides (L.). Philosophical Transactions of the Royal Society (B), 256, 237280.Google Scholar