Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T14:47:51.904Z Has data issue: false hasContentIssue false

The chromosomes Of Platynereis dumerilii (Polychaeta: Nereidae)

Published online by Cambridge University Press:  11 May 2009

A. N. Jha
Affiliation:
Brixham Environmental Laboratory, ZENECA Limited, Freshwater Quarry, Brixham, Devon, TQ5 8BA
T. H. Hutchinson
Affiliation:
Brixham Environmental Laboratory, ZENECA Limited, Freshwater Quarry, Brixham, Devon, TQ5 8BA
J. M. Mackay
Affiliation:
ZENECA Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, SK10 4TJ
B. M. Elliott
Affiliation:
ZENECA Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, SK10 4TJ
P. L. Pascoe
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB
D. R. Dixon
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB

Extract

The chromosomes of Platynereis dumerilii (Audouin & Milne-Edwards) are described here for the first time. A modal chromosome number of 2n=28 was recorded, based on counts conducted on metaphase spreads prepared from 24-h-old larvae. The karyotype comprises seven pairs, each of relatively large median (arm ratio, p/q=l.00–0.59) and submedian (arm ratio, 0.59–0.33) chromosomes. Attempts were also made to band the chromosomes using C-banding and silver staining methods. C-band-positive regions were localized on four chromosome pairs (three median, one submedian). A further two chromosome pairs (both median) were observed to have terminal nucleolar organizer regions (NORs). To our knowledge, this is the first time that these banding methods have been successfully applied to any polychaete species. These results are discussed in relation to the karyotypic variation within the class Polychaeta, and the family Nereidae in particular. A stable karyotype consisting of a moderate number of large and morphologically well-differentiated chromosomes, coupled with the ease of culture under laboratory conditions and short generation time, suggests that P. dumerilii is a potentially suitable model for evaluating marine contaminants for genotoxic activity.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åkesson, B., 1975. Reproduction in the genus Ophryotrocha (Polychaeta, Dorvilleidae). Pubblicazioni della Stazione Zoologica di Napoli, 39, supplement 1, 377398.Google Scholar
Åkesson, B., 1983. Methods for assessing the effects of chemicals on reproduction in marine worms. In Methods for assessing the effects of chemicals on reproductive functions (ed. V.B., Vouk and P.J., Sheehan), pp. 459482. New York: John Wiley & Sons.Google Scholar
Balajee, A.S. & Sharma, T., 1994. The chromosomal distribution of Mus musculus-like AT-rich heterochromatin in the M. dunni complex as revealed by Alu I digestion of metaphase chromosomes. Cytogenetics and Cell Genetics, 66, 8992.CrossRefGoogle Scholar
Baoling, W., Ruiping, S. & Dejian, Y., 1985. The Nereidae (polychaetous annelids) of the Chinese coast. Berlin: Springer-Verlag.Google Scholar
Bedford, A.P. & Moore, P.G., 1985. Macrofaunal involvement in the sublittoral decay of kelp debris: the polychaete Platynereis dumerilii (Audouin & Milne-Edwards) (Annelida: Polychaeta). Estuarine, Coastal and Shelf Science, 20, 117134.CrossRefGoogle Scholar
Bentley, M.G. & Pacey, A.A., 1992. Physiological and environmental control of reproduction in polychaetes. Oceanography and Marine Biology. Annual Review. London, 30, 443481.Google Scholar
Bostock, C.J. & Sumner, A.T., 1978. The eukaryotic chromosomes. Amsterdam: North-Holland Publishing Company.Google Scholar
Christensen, B., 1980. Annelida. In Animal cytogenetics (ed. B., John et al.), pp. 181. Berlin: Gebrüder Borntraeger.Google Scholar
Dales, R.P., 1963. Annelids. London: Hutchinson University Library.Google Scholar
Dorresteijn, A.W.C., 1990. Quantitative analysis of cellular differentiation during early embryo-genesis of Platynereis dumerilii. Wilhelm Roux's Archives of Developmental Biology, 199, 1430.CrossRefGoogle Scholar
Fauchald, K., 1977. The polychaete worms, definitions and keys to the orders, families and genera. Natural History Museum Los Angeles County Science Bulletin, 28, 19.Google Scholar
Gold, J.R. & Ellison, J.R., 1982. Silver staining for nucleolar organizing regions of vertebrate chromosomes. Stain Technology, 58, 5155.CrossRefGoogle Scholar
Grassle, J.P., Gelfman, C.E. & Mills, S.W., 1987. Karyotypes of Capitella sibling species, and of several species in the related genera Capitellides and Capitomastus (Polychaeta). Bulletin of Biological Society of Washington, 7, 7788.Google Scholar
Harrison, F.L. & Jones, I.M., 1982. An in vivo sister-chromatid exchange assay in the larvae of the mussel Mytilus edulis: response to three mutagens. Mutation Research, 105, 235242.CrossRefGoogle Scholar
Hartmann-Schröder, G., 1971. Annelida, Borstenwürmer, Polychaeta. Tierwelt Deutschlands und der Angrenzenden Meeresteile. Jena, 58, 1594.Google Scholar
Hauenschild, C. & Fischer, A., 1969. Platynereis dumerilii: mikroskopische Anatomie, Fortpflanzung, Entwicklung. Grosse Zoologisches Praktikum 10b. Stuttgart, Germany: Gustav Fischer Verlag.Google Scholar
Hutchinson, T.H., Jha, A.N. & Dixon, D.R., 1995. The polychaete Platynereis dumerilii (Audouin & Milne-Edwards): a new species for assessing the hazardous potential of chemicals in the marine environment. Ecotoxicology and Environmental Safety, in press.CrossRefGoogle Scholar
Ikeda, M. & Sato, M., 1991. Chromosome preparations from larvae and adult tissues of polychaetes. Benthos Research, 41, 2935. [In Japanese with English summary.]CrossRefGoogle Scholar
King, M., 1993. Species evolution: the mode of chromosome change. Cambridge University Press.Google Scholar
Levan, A., Fredga, K. & Sandberg, A.A., 1964. Nomenclature for centromeric position on chromosomes. Hereditas, 52, 201220.CrossRefGoogle Scholar
Martínez-Expósito, M.J., Pasantes, J.J. & Méndez, J., 1994. NOR activity in larval and juvenile mussels (Mytilus galloprovincialis Lmk.). Journal of Experimental Marine Biology and Ecology, 175, 155165.CrossRefGoogle Scholar
Medrano, L., Bernardi, G., Couturier, J., Dutrillaux, B. & Bernardi, G., 1988. Chromosome banding and genome compartmentalization in fishes. Chromosoma, 96, 178183.CrossRefGoogle Scholar
Ometz, S., 1963. Donees caryologiques sur deux espèces de nereidiens: Perinereis cultrifera Grube et Nereis diversicolor O.F. Müller (Annelids: Polychaetes). Compte Rendu des Seances de la Société de Biologie, 157, 813814.Google Scholar
Paris Conference, 1972. Standardization in human cytogenetics. Cytogenetics, 11, 313362.CrossRefGoogle Scholar
Pascoe, P.L. & Dixon, D.R., 1994. Structural chromosomal polymorphism in the dog-whelk Nucella lapillus (Mollusca: Neogastropoda). Marine Biology, 118, 247253.CrossRefGoogle Scholar
Pesch, G.G. & Pesch, C.E., 1980. Chromosome complement of the marine worm Neanthes arenaceodentata (Polychaeta: Annelida). Canadian Journal of Fisheries and Aquatic Sciences, 37, 286288.CrossRefGoogle Scholar
Pesch, G.G., Pesch, C.E. & Malcom, A.R., 1981. Neanthes arenaceodentata, a cytogenetic model for marine genetic toxicology. Aquatic Toxicology, 1, 301311.CrossRefGoogle Scholar
Pesch, G.G., Pesch, C.E. & Mueller, C., 1988. Chromosome complements from two populations of the marine worm Neanthes arenaceodentata (Annelida: Polychaeta). Ophelia, 28, 163167.CrossRefGoogle Scholar
Pflugfelder, O. Von, 1933. Landpolychaten aus Niederlandisch-Indien. Ergebnisse der Sunda-Expedition der Notgemeinschaft der Deutschen Wissenschaft 1929–30. Zoologischer Anzeiger, 105, 6576.Google Scholar
Sato, M. & Ikeda, M., 1992. Chromosomal complements of two forms of Neanthes japonica (Polychaeta, Nereididae) with evidence of male-heterogametic sex chromosomes. Marine Biology, 112, 299307.CrossRefGoogle Scholar
Smith, R.I., 1958. On reproductive pattern as a specific characteristic among nereid polychaetes. Systematic Zoology, 7, 6073.CrossRefGoogle Scholar
Sumner, A.T., 1972. A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research, 75, 304306.CrossRefGoogle ScholarPubMed
Thiriot-Quievreux, C., 1994. Advances in cytogenetics of aquatic organisms. In Genetics and evolution of aquatic organisms (ed. A.R., Beaumont), pp. 369388. London: Chapman & Hall.Google Scholar
Vogel, F. & Motulsky, A.G., 1982. Human genetics: problems and approaches. Berlin: Springer-Verlag.Google Scholar
Weinberg, J.R., Starczak, V.R., Mueller, C., Pesch, G.C. & Lindsay, S.M., 1990. Divergence between populations of a monogamous polychaete with male parental care: premating isolation and chromosome variation. Marine Biology, 107, 205213.CrossRefGoogle Scholar
White, M.J.D., 1978. Modes ofspeciation. San Francisco: W.H. Freeman Company.Google Scholar