Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T14:25:34.284Z Has data issue: false hasContentIssue false

Characterization of the in vitro production of N-acyl homoserine lactones by cultivable bacteria inhabiting the sponge Suberites domuncula

Published online by Cambridge University Press:  24 February 2016

Jasnizat Bin Saidin
Affiliation:
Universiti Malaysia Terengganu, IMB, Kuala Terengganu, Terengganu, Malaysia Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
Mohd Effendy Abd Wahid
Affiliation:
Universiti Malaysia Terengganu, IMB, Kuala Terengganu, Terengganu, Malaysia
Gaël Le Pennec*
Affiliation:
Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
*
Correspondence should be addressed to:G. Le Pennec, Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud, BP 92116, 56321 Lorient Cedex, France email: [email protected]

Abstract

Sponges together with associated bacteria form complex holobionts governed by various relationships established between the partners. Molecules of communication may participate in the homeostasis of these biological associations. Bacteria produce N-acyl homoserine lactones to communicate. In the present study, we characterized 102 cultivable bacteria isolated from the sponge Suberites domuncula at the genus level and described their production of AHLs during 96 h of culture in a Marine Broth medium. The presence of AHLs was monitored using the Escherichia coli pSB406 reporter strain. Sixty-seven bacteria were AHLs positive. Among them, 46 were related to the Gammaproteobacteria, eight to the Alphaproteobacteria, seven to the Firmicutes and six to the Flavobacteria. The kinetic production of AHLs was determined and compared with a reference bacterium, Pseudomonas aeruginosa PAO1 (pDA224). We established three profiles of AHLs production with no definitive pattern related to an order, a family or a genus of bacteria.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bary, A. (1879) De la symbiose. Revue internationale des Sciences 3, 301309.Google Scholar
Bazire, A., Dheilly, A., Diab, F., Morin, D., Jebbar, M., Haras, D. and Dufour, A. (2005) Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa . FEMS Microbiology Letters 253, 125131.Google Scholar
Brain, C.K.B., Prave, A.R., Hoffmann, K.H., Fallick, A.E., Botha, A., Herd, D.A., Sturrock, C., Young, I., Condon, D.J. and Allison, S.G. (2012) The first animals: ca. 760-million-years-old sponge-like fossil from Namibia. South African Journal of Science 108, 18.CrossRefGoogle Scholar
Brelles-Marino, G. and Bedmar, E.J. (2001) Detection, purification and characterization of quorum-sensing signal molecules in plant-associated bacteria. Journal of Biotechnology 91, 197209.CrossRefGoogle ScholarPubMed
Bruck, W.M., Reed, J.K. and McCarthy, P. (2012) The bacterial community of the Listhisd sponge Discodermia spp. as determined by cultivation and culture-independent methods. Marine Biotechnology 14, 762773.Google Scholar
Cui, X. and Harling, R. (2005) N-acyl-homoserine lactone-mediated quorum sensing blockage, a novel strategy for attenuating pathogenicity of Gram-negative bacterial plant pathogens. European Journal of Plant Pathology 111, 327339.CrossRefGoogle Scholar
Dheilly, A., Soum-Soutera, E., Klein, G.L., Bazire, A., Compere, C., Haras, D. and Dufour, A. (2010) Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6. Applied Environmental Microbiology 79, 34523461.CrossRefGoogle Scholar
Dietrich, L.A.P., Teal, T.K., Price-Whelan, A. and Newman, D.K. (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321, 12031206.Google Scholar
Dobson, A., Cotter, P.D., Ross, R.P. and Hill, C. (2012) Bacteriocin production: a probiotic trait? Applied Environmental Microbiology 78, 16.Google Scholar
Duncan, M.J. (2012) Host-pathogen dynamics: it's complicated!. Journal of Oral Microbiology 4, 1148211483.Google Scholar
Fieseler, L., Horn, M., Wagner, M. and Hentschel, U. (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Applied Environmental Microbiology 70, 37243732.Google Scholar
Flemer, B., Kennedy, J., Margassery, L.M., Morrissey, J.P., O'Gara, F. and Dobson, A.D.W. (2011) Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp. Journal of Applied Microbiology 112, 283301.Google ScholarPubMed
Fuqua, W.C., Winans, S.C. and Greenberg, E.P. (1994) Quorum sensing in bacteria: the LuxR-Lux I family of cell density-responsive transcriptional regulators. Journal of Bacteriology 176, 269275.CrossRefGoogle Scholar
Gardères, J., Bedoux, G., Koutsouvelli, V., Créquer, S., Desriac, F. and Le Pennec, G. (2015) Lipopolysaccharides from commensal and opportunistic bacteria: characterization and response of the immune system of the host sponge Suberites domuncula . Marine Drugs 13, 49855006.Google Scholar
Gardères, J., Henry, J., Bernay, B., Ritter, A., Zatylny-Gaudin, C., Wiens, M., Müller, W.E.G. and Le Pennec, G. (2014) Cellular effects of bacterial N-3-Oxo-Dodecanoyl-L-Homoserine lactone on the sponge Suberites domuncula (Olivi, 1792): insights into an intimate inter-kingdom dialogue. PLoS ONE 9, e97662. doi: 10.1371/journal.pone.0097662. eCollection 2014.Google Scholar
Gardères, J., Taupin, L., Bin Saidin, J., Dufour, A. and Le Pennec, G. (2012) N-acyl homoserine lactone production by bacteria within the sponge Suberites domuncula (Olivi, 1972) (Porifera, Demospongiae). Marine Biology 159, 16851692.Google Scholar
Geszvain, K. and Visick, K. (2005) Roles of bacterial regulators in symbiosis between Vibrio fischeri and Euprymna scolopes . Progress in Molecular and Subcellular Biology 41, 277290.CrossRefGoogle Scholar
Gontcharova, V., Youn, E., Wolcott, R.D., Hollister, E.B., Gentry, T.J. and Dowd, S.E. (2010) Black Box Chimera Check (B2C2): a Window-Based software for batch depletion of chimera from bacteria 16S rRNA gene datasets. Open Microbiology Journal 4, 4775.Google Scholar
Guo, X., Zheng, L., Zhou, W., Cui, Z., Han, P., Tian, L. and Wang, X. (2010) A case study on chemical defense based on quorum sensing: antibacterial activity of sponge-associated bacterium Pseudoalteromonas sp. NJ6-3-1 induced by quorum sensing mechanisms. Annals of Microbiology 61, 247255.Google Scholar
Hadas, E., Marie, D., Shpigel, M. and Ilan, M. (2006) Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnology and Oceanography 51, 15481550.CrossRefGoogle Scholar
Hartman, A. and Schikora, A. (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. Journal of Chemical Ecology 38, 704713.Google Scholar
Hentschel, U., Usher, K. M. and Taylor, M. W. (2006) Marine sponges as microbial fermenters. FEMS Microbiology Ecology 55, 167177.Google Scholar
Isnansetyo, A. and Kamei, Y. (2009) Bioactive substances produced by marine isolates of Pseudomonas . Journal of Industrial Microbiology and Biotechnology 36, 12391248.CrossRefGoogle ScholarPubMed
Jackson, S.A., Kennedy, J., Morrissey, J.P., O'Gara, F. and Dobson, A.D.W. (2012) Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. Microbial Ecology 64, 105116.Google Scholar
Ji, S., Zhao, R., Yin, Q., Zhao, Y., Liu, C., Xiao, T. and Zhang, X. (2012) Gel microbeads cultivation with a subenrichment procedure can yield better bacterial cultivability from a seawater sample than standard plating method. Journal of Ocean University of China 11, 4551.CrossRefGoogle Scholar
Klein, G.L., Soum-Soutera, E., Guede, Z., Bazire, A., Compère, C. and Dufour, A. (2011) The anti-biofilm activity secreted by a marine Pseudoalteromonas strain. Biofouling 27, 931940.Google Scholar
Kumari, A., Pasini, P., Deo, S. K., Flomenhoft, D., Shashidhar, H. and Daubert, S. (2006) Biosensing systems for the detection of bacterial quorum signaling molecules. Analytical Chemistry 78, 76037609.CrossRefGoogle ScholarPubMed
Le Pennec, G., Perovic, S., Ammar, M.S.A., Grebenjuk, V.A., Steffen, R., Brummer, F. and Müller, W.E.G. (2003) Cultivation of primmorphs from the marine sponge Suberites domuncula: morphogenetic potential of silicon and iron. Journal of Biotechnology 100, 93108.CrossRefGoogle ScholarPubMed
Lindsay, A. and Ahmer, B.M. (2005) Effect of sdiA on biosensors of N-acylhomoserine lactones. Journal of Bacteriology 187, 50545058.Google Scholar
Lyon, G.J. and Novick, R.P. (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25, 13891403.Google Scholar
Mitova, M., Tommonaro, G., Hentschel, U., Müller, W.E.G. and De Rosa, S. (2004) Exocellular cyclic dipeptides from a ruegeria strain associated with cell cultures of Suberites domuncula . Marine Biotechnology 6, 95103.Google Scholar
Mohamed, N.M., Cicirelli, E.M., Kan, J., Chen, F., Fuqua, C. and Hill, R.T. (2008) Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environmental Microbiology 10, 7586.CrossRefGoogle ScholarPubMed
Müller, W.E.G., Grebenjuk, V.A., Thakur, N.L., Thakur, A.N., Batel, R., Krasko, A., Müller, I.M. and Breter, H. J. (2004) Oxygen-controlled bacterial growth in the sponge Suberites domuncula: toward a molecular understanding of the symbiotic relationships between sponge and bacteria. Applied Environmental Microbiology 70, 23322341.Google Scholar
Muscholl-Siberhorn, A., Thiel, V. and Imhoff, J.F. (2007) Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microbial Ecology 55, 94106.Google Scholar
Parker, C.T. and Sperandio, V. (2009) Cell-to-cell signaling during pathogenesis. Cell Microbiology 11, 363369.Google Scholar
Ravn, L., Christensen, A.B., Molin, S., Givskov, M. and Gram, L. (2001) Method for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. Journal of Microbiological Methods 44, 239251.Google Scholar
Reveillaud, J., Maignien, L., Eren, A.M.M., Huber, J.A., Apprill, A., Sogin, M.L. and Vanreusel, A. (2014) Host-specificity among abundant and rare taxa in the sponge microbiome. ISME Journal 8, 11981209.Google Scholar
Romero, M., Avendano-Harrera, R., Magarinos, B., Camara, M. and Otero, A. (2010) Acylhomoserine lactone production and degradation by the fish pathogen Tenacibaculum maritimum, a member of Cytophaga-Flavobacterium-Bacteroides (CFB) group. FEMS Microbiology Letters 304, 131139.Google Scholar
Rua, C.P., Trindade-Silva, A.E., Appolinario, L.R., Venas, T.M., Garcia, G.D., Carvalho, L.S., Lima, A., Kruger, R., Pereira, R.C., Berlinck, R.G., Valle, R.A., Thompson, C.C. and Thompson, F. (2014) Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis . PeerJ 2, e419.Google Scholar
Ryan, R.P. and Dow, J.M. (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154, 18451858.Google Scholar
Schmitt, S., Hentschel, U. and Taylor, M.W. (2012) Deep sequencing reveals diversity and community structure of complex microbiota in five Mediterranean sponges. Hydrobiologia 687, 341351.Google Scholar
Schmitt, S., Tsai, P., Bell, J., Fromont, J., Ilan, M., Lindquist, N., Perez, T., Rodrigo, A., Schupp, P.J., Vacelet, J., Webster, N., Hentschel, U. and Taylor, M.W. (2013) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME Journal 6, 564576.CrossRefGoogle Scholar
Steindler, L. and Venturi, V. (2007) Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiology Letters 266, 19.Google Scholar
Steinert, G., Whitfield, S., Taylor, M.W., Thoms, C. and Schupp, P.J. (2014) Application of diffusion growth chambers for the cultivation of marine sponge-associated bacteria. Marine Biotechnology 16, 594603.Google Scholar
Taylor, M.W., Radax, R., Steger, D. and Wagner, M. (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biological Reviews 71, 295347.CrossRefGoogle ScholarPubMed
Taylor, M.W., Schupp, P.J., Baillie, H.J., Charlton, T.S., de Nys, R., Kjelleberg, S. and Steinberg, P.D. (2004) Evidence for acyl homoserine lactone signal production in bacteria associated with marine sponges. Applied Environmental Microbiology 70, 43874389.CrossRefGoogle ScholarPubMed
Teng, F., Guan, Y. and Zhu, W. (2008) A simple and effective method to overcome the inhibition of Fe to PCR. Journal of Microbiological Methods 75, 362364.Google Scholar
Thacker, R.W. and Freeman, C.J. (2012) Sponge-microbe symbiosis: recent advances and new directions. Advances in Marine Biology 62, 57111.Google Scholar
Thakur, A.N., Thakur, N.L., Indap, M.M., Pandit, R.A., Datar, V.V. and Müller, W.E.G. (2005) Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Marine Biotechnology 7, 245252.Google Scholar
Wang, X., Brandt, D., Thakur, N.L., Wiens, M., Batel, R., Schroeder, H.C. and Muller, W.E.G. (2013) Molecular cross-talk between sponge host and associated microbes. Phytochemical Review 12, 369390.Google Scholar
Wang, Y., Ikawa, A., Okaue, S., Taniguchi, S., Osaka, I., Yoshimoto, A., Kishida, Y., Arakawa, R. and Enomoto, K. (2008) Quorum sensing signaling molecules involved in the production of violacein by Pseudoalteromonas . Bioscience, Biotechnology, and Biochemistry 72, 19581961.Google Scholar
Webster, N.S., Taylor, M.W., Behnam, F., Lücker, S., Rattei, T., Whalan, S., Horn, M. and Wagner, M. (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environmental Microbiology 12, 20702082.Google Scholar
Winson, M.K., Swift, S., Fish, L., Throup, J.P., Jorgensen, F., Chhabra, S.R., Bycroft, B.W., William, P. and Steward, G.S.A.B. (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiology Letters 163, 185192.Google Scholar
Zan, J., Fuqua, C. and Hill, R.T. (2011) Diversity and functional analysis of luxS genes in vibrios from marine sponges Mycale laxissima and Ircinia strobilina . ISME Journal 5, 112.Google Scholar
Zilber-Rosenberg, I. and Rosenberg, E. (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiology Review 32, 723735.Google Scholar