Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T10:54:09.719Z Has data issue: false hasContentIssue false

Biomass and distribution of the red octopus (Octopus maya) in the north-east of the Campeche Bank

Published online by Cambridge University Press:  10 June 2019

Otilio Avendaño
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, CP 97310, Mérida, Yucatán, México Universidad de Ciencias y Artes de Chiapas, Tonalá, Chiapas, C.P. 30500, México
Iván Velázquez–Abunader*
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, CP 97310, Mérida, Yucatán, México
Carlos Fernández–Jardón
Affiliation:
Facultad de Ciencias Económicas y Empresariales, Universidad de Vigo, C.P. 36310, Vigo, España
Luis Enrique Ángeles–González
Affiliation:
Universidad Nacional Autónoma de México, Sisal, Yucatán, C.P. 97356, México
Alvaro Hernández-Flores
Affiliation:
Universidad Marista de Mérida, Periférico norte tablaje catastral 13941, Carretera Mérida-Progreso. C.P. 97300 Mérida, Yucatán, México
Ángel Guerra
Affiliation:
ECOBIOMAR, Instituto de Investigaciones Marinas (IIM-CSIC), C.P. 36208, Vigo, España
*
Author for correspondence: Iván Velázquez–Abunader, Email: [email protected]

Abstract

The regulatory framework of the red octopus (Octopus maya) fishery includes total allowable catches (TAC), which are based on studies conducted on the population that occurs in shallow waters. In fact, most of the biological studies of this species refer to the fraction of the population that occupies waters less than 30 m deep; however, O. maya can occur up to a 60 m depth. The aim of this study is to assess the stock of O. maya that occupies waters between 30 m and 60 m deep. Four research cruises were carried out during the closed and fishing seasons, from May 2016 to January 2017. An average of 29 sampling sites were surveyed in each cruise (±2 sampling sites) using a commercial vessel with a uniform sampling effort. In each sampling site, the swept area, the total number of octopuses captured, the total weight of the catch, and the individual weight of octopuses were recorded. Biomass was obtained with four methods: stratified random method, swept area method, geostatistical biomass model, and an unpublished method of weighted swept area. The four methods provided consistent results. The distribution pattern of species was in patches, although before the fishing season started it was more homogeneous. The fraction of the population that occurs between 30 m and 60 m deep consisted mostly of adult organisms, so it could be contributing significantly to the recruitment of the entire population, even to the fraction that is exploited.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ángeles-González, LE, Calva, R, Santos-Valencia, J, Avila-Poveda, OH, Olivares, A, Diaz, F and Rosas, C (2017) Temperature modulates spatio-temporal variability of the functional reproductive maturation of Octopus maya (Cephalopoda) on the shelf of the Yucatan Peninsula, Mexico. Journal of Molluscan Studies 83, 280288.Google Scholar
Arreguín-Sánchez, F, Solís-Ramírez, MJ and González de la Rosa, ME (2000) Population dynamics and stock assessment for Octopus maya (Cephalopoda: Octopodidae) fishery in the Campeche Bank, Gulf of Mexico. Revista de Biología Tropical 48, 323331.Google Scholar
Avila-Poveda, OH, Koueta, N, Benítez-Villalobos, F, Santos-Valencia, J and Rosas, C (2016) Reproductive traits of Octopus maya (Cephalopoda: Octopoda) with implications for fisheries management. Molluscan Research 36, 2944.Google Scholar
Brassel, KE and Reif, D (1979) A procedure to generate Thiessen polygons. Geographical Analysis 11, 289303.Google Scholar
Cabrera-Vázquez, MA, Ramos-Miranda, J. and Salas, S (2012) Análisis de la Estructura Poblacional del Pulpo Rojo (Octopus maya) en la Península de Yucatán, México. Proceedings of the 64th Gulf and Caribbean Fisheries Institute October 31–November 5, 2011 Puerto Morelos, Mexico 64, 481485.Google Scholar
Cochran, WG (1980) Técnicas de muestreo (CECSA). Compañía Editorial Continental. México. 513 pp. ISBN: 9682601517.Google Scholar
Cressie, N (1992) Statistics for spatial data. Terra Nova 4, 613617.Google Scholar
Csirke, J (1989) Introducción a la dinámica de poblaciones de peces (Documento Técnico de Pesca No. 192). Rome: FAO, 82 pp.Google Scholar
Diario Oficial de la Federación (2016) Norma Oficial Mexicana NOM008SAG/PESC2015, para ordenar el aprovechamiento de las especies de pulpo en las aguas de jurisdicción federal del Golfo de México y Mar Caribe. 13 de abril de 2016. SAGARPA. Ciudad de México.Google Scholar
Duarte, JA, Hernández-Flores, A, Salas, S and Seijo, JC (2018) Is it sustainable fishing for Octopus maya Voss and Solis, 1966, during the breeding season using a bait-based fishing technique? Fisheries Research 199, 119126.Google Scholar
Enriquez, C, Mariño-Tapia, IJ and Herrera-Silveira, JA (2010) Dispersion in the Yucatan coastal zone: implications for red tide events. Continental Shelf Research 30, 127137.Google Scholar
Gamboa-Álvarez, , López-Rocha, JA and Poot-López, GR (2015) Spatial analysis of the abundance and catchability of the red octopus Octopus maya (Voss and Solis-Ramírez, 1966) on the continental shelf of the Yucatán peninsula, México. Journal of Shellfish Research 34, 481492.Google Scholar
Guerra, A (1981) Spatial distribution pattern of Octopus vulgaris Cuvier. Journal of Zoology of London 195, 133146.Google Scholar
Hernández-Flores, A, Condal, A, Poot-Salazar, A and Espinoza-Mendez, J (2015) Geostatistical analysis and spatial modeling of population density for the sea cucumbers Isostichopus badionotus and Holothuria floridana on the Yucatan Peninsula, Mexico. Fisheries Research 172, 114124.Google Scholar
Hernández-Herrera, A, Morales-Bojórquez, E, Cisneros-Mata, M, Nevárez-Martínez, M and Rivera-Parra, G (1998) Management strategy for the giant squid (Dosidicus gigas) fishery in the Gulf of California, Mexico. CalCOFI Report 39, 212218.Google Scholar
Hermosilla, C, Rocha, F and Valavanis, VD (2011) Assessing Octopus vulgaris distribution using presence-only model methods. Hydrobiologia 670, 3547.Google Scholar
Jereb, P, Roper, CFE, Norman, MD and Finn, JK (2014) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 3. Octopods and vampire squids. Species Catalogue for Fishery Purposes. Rome: FAO. 4(3), 382 pp. ISSN .Google Scholar
Jurado-Molina, J (2010) A Bayesian framework with implementation error to improve the management of the red octopus (Octopus maya) fishery off the Yucatán Peninsula. Ciencias Marinas 36, 114.Google Scholar
Lima, FD, Berbel-Filho, WM, Leite, TS, Rosas, C and Lima, SM (2017) Occurrence of Octopus insularis Leite and Haimovici, 2008 in the Tropical Northwestern Atlantic and implications of species misidentification to octopus fisheries management. Marine Biodiversity 47, 723734.Google Scholar
Markaida, U, Méndez-Loeza, I and Rosales-Raya, ML (2017) Seasonal and spatial trends of Mayan octopus, Octopus maya, population dynamics from Campeche, Mexico. Journal of the Marine Biological Association of the United Kingdom 97, 16631673.Google Scholar
Nevárez-Martínez, MO, Hernández-Herrera, A, Morales-Bojórquez, E, Balmori-Ramírez, A, Cisneros-Mata, MA and Morales-Azpeitia, R (2000) Biomass and distribution of the jumbo squid (Dosidicus gigas; d'Orbigny, 1835) in the Gulf of California, Mexico. Fisheries Research 49, 129140.Google Scholar
Noyola, J, Caamal-Monsreal, C, Díaz, F, Re, D, Sanchez, A and Rosas, C (2013) Thermopreference, tolerance and metabolic rate of early stages juvenile Octopus maya acclimated to different temperatures. Journal of Thermal Biology 38, 1419.Google Scholar
Otero, J, González, AF, Guerra, A and Álvarez-Salgado, XM (2009) Efectos do clima sobre o polbo común. Evidencias do cambio climático en Galicia, Xunta de Galicia, Consellería de Medio e Desenvolvemento Sostible, 403–421.Google Scholar
Pebesma, EJ and Bivand, RS (2005) Classes and methods for spatial data in R. R News 5(2), https://cran.r-project.org/doc/Rnews/.Google Scholar
Pecl, GT and Jackson, GD (2008) The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Reviews in Fish Biology and Fisheries 18, 373385.Google Scholar
Pierce, GJ and Guerra, A (1994) Stock assessment methods used for cephalopod fisheries. Fisheries Research 21, 255285.Google Scholar
Pierce, GJ, Valavanis, VD, Guerra, A, Jereb, P, Orsi-Relini, L, Bellido, JM, Katara, I, Piatkowski, U, Pereira, J, Balguerias, E, Sobrino, I, Lefkaditou, E, Wang Jianjun, , Santurtun, M, Boyle, PR, Hastie, LC, MacLeod, CD, Smith, JM, Viana, M, González, AF and Zuur, AF (2008) A review of cephalopod–environment interactions in European seas. Hydrobiologia 612, 4970.Google Scholar
R Core Team (2017) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Ramos, JE, Pecl, GT, Moltschaniwskyj, NA, Strugnell, JM, León, RI and Semmens, JM (2014) Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia. PLoS ONE 9, e103480.Google Scholar
Rivoirard, J, Simmonds, J, Foote, K, Fernandes, P and Bez, N (2008) Geostatistics for Estimating Fish Abundance. Oxford: Blackwell. Wiley.Google Scholar
Rosenberg, A, Kirkwood, G, Crombie, J and Beddington, J (1990) The assessment of stocks of annual squid species. Fisheries Research 8, 335350.Google Scholar
Salas, S, Cabrera, M, Palomo, L, Bobadilla, F, Ortega, P and Torres, E (2008) Plan de manejo y operación del comité de administración pesquera de escama y pulpo. Informe Final. Cinvestav IPN Unidad Mérida, Mexico.Google Scholar
Salas-Pérez, JdJS, Salas-Monreal, D, Monreal-Gómez, MA, Riveron-Enzastiga, ML and Llasat, C (2012) Seasonal absolute acoustic intensity, atmospheric forcing and currents in a tropical coral reef system. Estuarine, Coastal and Shelf Science 100, 102112.Google Scholar
Sawatzky, D, Raines, G, Bonham-Carter, G and Looney, C (2009) Spatial Data Modeller (SDM): ArcMAP 9.2 geoprocessing tools for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural networks. Available at http://arcscripts.esri.com/details.asp?dbid=15341.Google Scholar
Scheaffer, RL, Mendenhall, W and Ott, L (1987) Elementos de Muestreo, Vol. 33. D.F. México: Grupo Editorial Iberoamérica.Google Scholar
Solís-Ramírez, M and Chávez, E (1986) Evaluación y régimen óptimo de pesca del pulpo de la península de Yucatán. Anales del Instituto Ciencias del Mar y Limnologia 13, 118.Google Scholar
Velázquez-Abunader, I, Salas, S and Cabrera, MA (2013) Differential catchability by zone, fleet, and size: the case of the red octopus (Octopus maya) and common octopus (Octopus vulgaris) fishery in Yucatan, Mexico. Journal of Shellfish Research 32, 845854.Google Scholar
Webster, R and Oliver, MA (2007) Geostatistics for Environmental Scientists. Chichester: Wiley.Google Scholar
Zar, JH (1999). Biostatistical Analysis, 4th edition. Upper Saddle River, NJ: Prentice-Hall.Google Scholar