Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T14:56:57.921Z Has data issue: false hasContentIssue false

Biochemical Studies on Marine Zooplankton V. The Composition of the Major Biochemical Fractions in Neomysis Integer

Published online by Cambridge University Press:  11 May 2009

J. E. G. Raymont
Affiliation:
The Department of Oceanography, Southampton University
J. Austin
Affiliation:
The Department of Oceanography, Southampton University
E. Linford*
Affiliation:
The Department of Oceanography, Southampton University
*
1National Institute for Research in Dairying, Shinfield, Reading

Extract

The earlier investigations (Raymont, Austin & Linford, 1964, 1966) on the brackish-water, semi-planktonic mysid, Neomysis integer (Leach), dealt with the total protein, lipid and carbohydrate fractions, together with chitin and ash. Results showed that a relatively high protein content (mean 71 % dry weight) was typical of Neomysis; the protein showed very little change throughout the year. Lipid was much lower and more variable (7–15%; mean 13 % dry weight), and carbohydrate was especially low (mean 2.5 % dry weight). Ash and chitin together amounted to some 14 % dry weight (Raymont et al., 1966).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, K., 1961. The effect of salinity on the amino acid concentration in Rangia cuneata (Pelecypoda). Biol. Bull. mar. biol. Lab. Woods Hole, Vol. 121, pp. 419–24.CrossRefGoogle Scholar
American Oil Chemists’ Society, 1946. Official and Tentative Methods. 2nd ed. Illinois.Google Scholar
Baldwin, E., 1959. Dynamic Aspects of Biochemistry. 526 pp. Cambridge University Press.Google Scholar
Barnes, H., 1959. Apparatus and Methods of Oceanography. Part I. Chemical. 341 pp. London: Allen and Unwin.Google Scholar
Beers, J. R., 1964. Ammonia and inorganic phosphorus excretion by the planktonic chaetognath, Sagitta hispida Conant. J. Cons. perm. int. Explor. Mer, Vol. 29, pp. 123–9.CrossRefGoogle Scholar
Block, R. J. & Weiss, K. W., 1956. Amino acid handbook. 386 pp. Springfield: Thomas.Google Scholar
Blumer, M. & Thomas, D. W., 1965. ‘Zamene’, isomeric C19 monoolefins from marine zooplankton, fishes and mammals. Science N.Y., Vol. 148, pp. 370–1.CrossRefGoogle ScholarPubMed
Bogorov, V. G., Bordovskiy, O. K. & Vinogradov, M. Y., 1966. Biogeochemistry of ocean plankton. Distribution of certain chemical components of plankton in the Indian Ocean. Oceanology (Acad. Sci. U.S.S.R.), Vol. 6, pp. 256–65.Google Scholar
Borgström, B., 1952a. Investigation on lipid separation methods. Separation of phospholipids from neutral fat and fatty acids. Acta phys. Scandinav., Vol. 25, pp. 101–10.CrossRefGoogle ScholarPubMed
Borgstrom, B., 1952b. Investigation on lipid separation methods. Separation of cholesterol esters, glycerides, and free fatty acids. Acta phys. Scandinav., Vol. 25, pp. 111–19.CrossRefGoogle ScholarPubMed
Borgström, F., 1962. Fish as Food, Vol. 11, 777 pp. New York and London: Academic Press.Google Scholar
Bricteux-Grégoire, S., Jeuniaux, C. & Florkin, M., 1961. Role de la variation de la composante amino acids intracellulaire dans l'euryhalinité de Leander serratus F. et de Leander squilla L. Arch. int. Physiol., Vol. 69, pp. 744–5.Google Scholar
Burchfield, H. P. & Storrs, E. E., 1962. Biochemical Applications of Gas Chromatography. 680 pp. New York and London: Academic Press.Google Scholar
Chau, Y. K., Chuecas, L. & Riley, J. P., 1967. The component combined amino acids of some marine phytoplankton species. J. mar. biol. Ass. U.K., Vol. 47, pp. 543–54.CrossRefGoogle Scholar
Christomanos, A. A., Dimitriadis, A., & Gardiki, V., 1962. Contribution to plankton chemistry. I. Chim. Chnon., Vol. 27, pp. 23–6.Google Scholar
Collier, A., 1967. Fatty acids in certain plankton organisms. In Estuaries. (Editor Lauff, G. H.), pp. 353–60. Public. No. 83, AAAS, Washington, D.C.Google Scholar
Conover, R. J., 1962. Metabolism and growth in Calanus hyperboreus in relation to its life-cycle. Rapp. Proc. Verb. Cons. Explor. Mer, Vol. 153, pp. 190–6.Google Scholar
Conover, R. J., 1964. Food relations and nutrition of zooplankton. Occas. Publs, Proc. Symp. exptl mar. Ecol., No. 2, pp. 8191. University Rhode Island.Google Scholar
Corner, E. D. S., Cowey, C. B. & Marshall, S. M., 1965. On the nutrition and metabolism of zooplankton. III. Nitrogen excretion by Calanus. J. mar. biol. Ass. U.K., Vol. 45, pp. 429–42.CrossRefGoogle Scholar
Corner, E. D. S., Cowey, C. B. & Marshall, S. M., 1967. On the nutrition and metabolism of zooplankton. V. Feeding efficiency of Calanus finmarchicus. J. mar. biol. Ass. U.K., Vol. 47, pp. 259–70.CrossRefGoogle Scholar
Corner, E. D. S. & Newell, B. S., 1967. On the nutrition and metabolism of zoo-plankton. IV. The forms of nitrogen excreted by Calanus. J. mar. biol. Ass. U.K., Vol. 47, pp. 113–20.CrossRefGoogle Scholar
Cowey, C. B. & Corner, E. D. S., 1962. The amino acid composition of Calanus finmarchicus (Claus) in relation to that of its food. Rapp. Proc. Verb. Cons. Explor. Mer, Vol. 153, pp. 124–8.Google Scholar
Cowey, C. B. & Corner, E. D. S., 1963a. Amino acids and some other nitrogenous compounds in Calanus finmarchicus. J. mar. biol. Ass. U.K., Vol. 43, pp. 485–93.CrossRefGoogle Scholar
Cowey, C. B. & Corner, E. D. S., 1963b. On the nutrition and metabolism of zoo-plankton. II. The relationship between the marine copepod Calanus helgolandicus and paniculate material in Plymouth sea water in terms of amino acid composition. J. mar. biol. Ass. U.K., Vol. 43, pp. 495511.CrossRefGoogle Scholar
Cowey, C. B. & Corner, E. D. S., 1966. The amino acid composition of certain unicellular algae, and of the faecal pellets produced by Calanus finmarchicus when feeding on them. In Some Contemporary Studies in Marine Science, editor H., Barnes, pp. 225–31. London: Allen and Unwin.Google Scholar
Craig, L. C, Hausmann, W., Ahrens, E. H Jr. & Harpenist, E. J., 1951. Determination of weight curves in column processes. Anal. Chem., Vol. 23, pp. 1326–7.CrossRefGoogle Scholar
Cramer, F., 1954. Paper Chromatography. 124 pp. London: Macmillan.Google Scholar
Curl, H., 1962. Standing crops of carbon, nitrogen and phosphorus and transfer between trophic levels, in continental shelfwaters south of New York. Rapp. Proc. Verb. Cons. Explor. Mer, Vol. 153, pp. 183–9.Google Scholar
Datta, P. K., Hanson, K. R. & Whitaker, D. R. 1963. Improved procedures for preparation and characterisation of Myrothecium cellulase. Part III. Molecular weight, amino acid composition, terminal residues, and other properties. Can.J. Biochem. Physiol., Vol. 41, pp. 697705.CrossRefGoogle Scholar
Dent, C. E., 1948. A study of the behaviour of some 60 amino acids and other ninhydrin reacting substances on phenol/collidine filter paper chromatograms, with notes as to the occurrence of some of them in biological fluids. Biochem. J. Vol. 43, pp. 169–80.CrossRefGoogle Scholar
Dresle, E. B. & Moyle, V., 1950. Nitrogenous excretion in amphipods and isopods. J. exp. Biol., Vol. 27, pp. 210–25.CrossRefGoogle Scholar
Duchateau-Bosson, G., Jeuniaux, C. & Florkin, M., 1961. Role de la variation de la composante amino acids intracellulaire dans l'euryhalinité d'Arenicola marina L. Arch. int. Physiol., Vol. 69, pp. 30–5.Google Scholar
Fillerup, D. L. & Mead, J. F., 1953. Chromatographic separation of the plasma lipids. Proc. Soc. exp. Biol. Med., Vol. 83, pp. 574–7.CrossRefGoogle ScholarPubMed
Fisher, L. R., 1962. The total lipid material in some species of marine zooplankton. Rapp. Proc. Verb. Cons. Explor. Mer, Vol. 153, pp. 129–36.Google Scholar
Folch, J., Lees, M. & Sloane, Stanley G. H., 1956. A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem., Vol. 226, pp. 497509.CrossRefGoogle Scholar
Fruton, J. S. & Simmonds, S., 1959. General Biochemistry. 1077 pp. New York: John Wiley & Sons.Google Scholar
Getz, G. S. & Bartley, W., 1961. The intracellular distribution of fatty acids in rat liver. Biochem. J., Vol. 78, pp. 307–12.CrossRefGoogle ScholarPubMed
Harris, E., 1959. The nitrogen cycle in Long Island Sound. Bull. Bingham oceanogr. Coll., Vol. 17, pp. 3165.Google Scholar
Haq, S. M., 1967. Nutritional physiology of Metridia lucens and M. longa from the Gulf of Maine. Limnol. Oceanogr., Vol. 12, pp. 4051.CrossRefGoogle Scholar
Hirsch, J. & Ahrens, E. H. Jun., 1958. The separation of complex lipid mixtures by the use of silicic acid chromatography. J. biol. Chem., Vol. 233, pp. 311–20.CrossRefGoogle ScholarPubMed
G, Huggett A. St.. and Nixon, D. A., 1957. Use of glucose oxidase, peroxidase and o-dianisidine in determination of blood and urinary glucose. Lancet, N.S., Vol. 2, pp. 368–70.Google Scholar
Jeuniaux, C. & Florkin, M., 1961. Modification de l'excrétion azotée du crabe Chinois au course de l'adaptation osmotique. Arch. int. Physiol., Vol. 69, pp. 385–6.Google Scholar
Jeuniaux, C, Bricteux-Grégoire, S. & Florkin, M., 1962. Role osmorégulateur intracellulaire du glycocolle et de la taurine chez l'etoile de mer, Asterias rubens. Arch. int. Physiol., Vol. 79, pp. 155–6.Google Scholar
Johannes, R. E. & Webb, K. L., 1965. Release of dissolved amino acids by marine zooplankton. Science, N.Y., Vol. 150, pp. 76–7.CrossRefGoogle ScholarPubMed
Kelly, P. B., Reiser, R. & Hood, D. W., 1959. The origin of marine polyunsaturated fatty acids. Composition of some marine plankton. J. Am. Oil Chem. Soc, Vol. 36, pp. 104–6.CrossRefGoogle Scholar
Koch, F. C. & Hanke, M. E., 1945. Practical Methods in Biochemistry. 419 pp. Baltimore: Williams and Wilkins.Google Scholar
Krisman, C. R., 1962. A method for the colorimetric estimation of glycogen with iodine. Analyt. Biochem., Vol. 4, pp. 1723.CrossRefGoogle ScholarPubMed
Kruse, J. & Mellon, M. G., 1952. The colorimetric determination of free ammonia with a pyridine/pyrazolone reagent. Sewage ind. Wastes, Vol. 24, pp. 1098–100.Google Scholar
Lea, C. H., Rhodes, D. N. & Stoll, R. D., 1955. Phospholipids. 3. On the chromatographic separation of glycerophospholipids. Biochem. J., Vol. 60, pp. 353–63.CrossRefGoogle ScholarPubMed
Lewis, P. R., 1952. Free amino acids in invertebrate nerve. Biochem. J., Vol. 52, pp. 330–8.CrossRefGoogle ScholarPubMed
Linford, E., 1965. Biochemical studies on marine zooplankton. II. Variations in the lipid content of some Mysidacea. J. Cons. perm. int. Explor. Mer, Vol. 30, pp. 1627.CrossRefGoogle Scholar
Lis, E. W., Tonoco, J. & Okey, R., 1961. A micromethod for fractionation of lipids by silicic acid chromatography. Anal. Biochem., Vol. 2, pp. 100–6.CrossRefGoogle ScholarPubMed
Littlepage, J. L., 1964. Seasonal variation in lipid content of two antarctic marine Crustacea. Actual. Scient. Ind., Vol. 1312, pp. 463–70.Google Scholar
Lovern, J. A., 1964. The lipids of marine organisms. Ann. Rev. Oceanogr. & mar. Biol., Vol. 2, pp. 169–91.Google Scholar
Manwell, C., Baker, C. M. A., Ashton, P. A. & Corner, E. D. S., 1967. Biochemical differences between Calanus finmarchicus and C. helgolandicus. Esterases, malate, and triosephosphate dehydrogenases, aldolase, ‘peptidases’, and other enzymes. J. mar. biol. Ass. U.K., Vol. 47, pp. 145–69.CrossRefGoogle Scholar
Mcwhinnie, M. A. & Corkill, A. J., 1964. The hexosemonophosphate pathway and its variation in the intermolt cycle in crayfish. Comp. Biochem. and Physiol., Vol. 12, pp. 8193.CrossRefGoogle ScholarPubMed
Millar, R. H. & Scott, J. M., 1967. The larva of the oyster Ostrea edulis during starvation. J. mar. biol. Ass. U.K., Vol. 47, pp. 475–84.CrossRefGoogle Scholar
Milton, R. F. & Waters, W. A., 1955. Methods of Quantitative Microanalysis. Second edition. 599 pp. London: Edward Arnold.Google Scholar
Nicol, J. A. C., 1960. The Biology of Marine Animals. 707 pp. London: Pitman.CrossRefGoogle Scholar
Parry, G., 1960. Excretion. In The Physiology of Crustacea, Vol. I, pp. 341–66. editor, Waterman, T. H., New York and London: Academic Press.Google Scholar
Petipa, T. S., 1964. Diurnal rhythm of the consumption and accumulation of fat in Calanus helgolandicus (Claus) in The Black Sea. Dokl. Akad. Nauk. S.S.S.R., Vol. 156, pp. 1440–3 [N.L.L. translation].Google Scholar
Raymont, J. E. G., Austin, J. & Linford, E., 1964. Biochemical studies on marine zooplankton. I. The biochemical composition of Neomysis integer. J. Cons. perm. int. Explor. Mer, Vol. 28, pp. 354–63.CrossRefGoogle Scholar
Raymont, J. E. G., Austin, J. & Linford, E., 1966. Biochemical studies on marine zooplankton. III. Seasonal variations in the biochemical composition of Neomysis integer. In Some Contemporary Studies in Marine Science, editor, H., Barnes, pp. 597605. London: Allen and Unwin.Google Scholar
Raymont, J. E. G., Austin, J. & Linford, E., 1967. The biochemical composition of certain oceanic zooplanktonic decapods. Deep-Sea Res., Vol. 14, pp. 113–15.Google Scholar
Raymont, J. E. G., Krishnaswamy, S. & Tundisi, J., 1967. Biochemical studies on marine zooplankton. IV. Investigations on succinic dehydrogenase activity in zooplankton with special reference to Neomysis integer. J. Cons. perm. int. Explor. Mer, Vol. 31, pp. 164–9.CrossRefGoogle Scholar
Raymont, J. E. G. & Linford, E., 1966. A note on the biochemical composition of some Mediterranean zooplankton. Int. Rev. ges. Hydrobiol., Vol. 51, pp. 485–8.CrossRefGoogle Scholar
Read, K. R. H., 1962. Transamination in certain tissue homogenates of the bivalved molluscs Mytilus edulis L. and Modiolus modiolus L. Conf. Biochem. Physiol., Vol. 7, pp. 1522.Google ScholarPubMed
Saiki, M. & Mori, T. 1956. Studies on the whale oil. XII. On the lipid from Calanus cristatus (Part I). Fatty acids composition of oil from Calanus cristatus collected in the stomach of fin whale caught at the northern Pacific Ocean. Bull. Jap. Soc. Sci. Fish., Vol. 21, pp. 1041–4.CrossRefGoogle Scholar
Saiki, M., Fang, S., & Mori, T., 1959. Studies on the lipid of plankton. II. Fatty acid composition of lipids from Euphausiacea collected in the antarctic and northern Pacific Oceans. Bull. Jap. Soc. Sci. Fish., Vol. 24, pp. 837–9.CrossRefGoogle Scholar
Sheard, K., 1953. Taxonomy, distribution and development of the Euphausiacea (Crustacea). Rep. B.A.N.Z. Ant. Res. Exped. 1929–31, Ser. B., Vol. 8, pp. 1–72.Google Scholar
Simpson, J. W., Allen, K. & Awapara, J., 1959. Free amino acids in some aquatic invertebrates. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 117, pp. 371–81.CrossRefGoogle Scholar
Smith, I., 1960. Chromatographic and Electrophoretic Techniques. 617 pp. London: Heinemann.Google Scholar
Strickland, J. D. H. & Parsons, T. R., 1960. A manual of sea water analysis. Bull. Fish. Res. Bd Can., Vol. 125, pp. 1185.Google Scholar
Sushkina, A. P., 1961. Vertical distribution of Calanus finmarchicus (Gunn.) and its fat content. Dokl. Acad. Sci. U.S.S.R., Oceanology (translated Amer. Geophys. Union). Vol. 136–41, pp. 82–4.Google Scholar
Vinogradova, Z. A., 1956. On the chemical composition of food organisms and fish of the Black Sea. Proc. Fish Physiol. Conf. Moscow 1956, pp. 427–36. [N.L.L. translation.]Google Scholar
Vinogradova, Z. A., 1960. Study of the biochemical composition of Antarctic krill (Euphausia superba Dana). Dokl. Akad. Nauk. S.S.S.R., Vol. 133, pp. 680–2. [N.L.L. translation.]Google Scholar
Vinogradova, Z. A., 1964. Some biochemical aspects of a comparative study of plankton from the Black Sea, the Sea of Azov and the Caspian Sea. Okeanologiya, Vol. 4 (2), pp. 232–42. [N.L.L. translation.]Google Scholar
Vonk, H. J., 1960. Digestion and Metabolism. In The Physiology of Crustacea, Vol. I, editor Waterman, T. H., pp. 291316. New York and London: Academic Press.Google Scholar
Wren, J. J., 1960. Chromatography of lipids on silicic acid. J. Chromat., Vol. 4, pp. 173–95.CrossRefGoogle ScholarPubMed
Yamada, M., 1961. Studies on the lipid of plankton. I. The lipid of Neomysis nakazazvai Ii. J. Japan Oil Chem. Soc, Vol. 10, pp. 236–9.CrossRefGoogle Scholar