Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T17:24:32.639Z Has data issue: false hasContentIssue false

A biochemical investigation of a Phaeocystis sp. bloom in the Irish Sea

Published online by Cambridge University Press:  11 May 2009

H. Claustre
Affiliation:
Laboratoire de Physique et Chimie Marines, CNRS, UA353, Observatoire Oceanologique de Villefranche, BP 08, F-06230 Villefranche-sur-mer, France
S. A. Poulet
Affiliation:
Centre d'étude Océanographique et de Biologie Marine, CNRS et Université P. & M. Curie, F-29211 Roscoff, France
R. Williams
Affiliation:
Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH
J. -C. Marty
Affiliation:
Laboratoire de Physique et Chimie Marines, CNRS, UA353, Observatoire Oceanologique de Villefranche, BP 08, F-06230 Villefranche-sur-mer, France
S. Coombs
Affiliation:
Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH
F. Ben Mlih
Affiliation:
Laboratoire de Physique et Chimie Marines, CNRS, UA353, Observatoire Oceanologique de Villefranche, BP 08, F-06230 Villefranche-sur-mer, France
A. M. Hapette
Affiliation:
Centre d'étude Océanographique et de Biologie Marine, CNRS et Université P. & M. Curie, F-29211 Roscoff, France
V. Jezequel-Martin
Affiliation:
Centre d'étude Océanographique et de Biologie Marine, CNRS et Université P. & M. Curie, F-29211 Roscoff, France

Abstract

In early June 1988, an extensive bloom of Phaeocystis sp. (29xlO6 cells 1−1) was observed in the eastern Irish Sea along the North Wales coast. Chlorophylls, carotenoids, free amino acids, fatty acids, vitamin C, carbon and nitrogen were measured in particles from three size categories (<22 μm, 22–100 μm and 100–200 μm) at a station 13 miles off the coast line. Phaeocystis sp. formed 99% of the total particle stock below 22 μm and was characterized by (1) the presence of chlorophyll c3, (2) the dominance of fucoxanthin over 19'- acyloxyfucoxanthins, (3) the presence of C18:5 fatty acid at trace levels and (4) different proportions of amino acids compared to those measured in particles greater than 22 μm. These larger particles were dominated by diatoms, dinoflagellates and ciliates. The poor nutritional value of Phaeocystis sp. for herbivorous zooplankton was characterised by its low content of polyunsaturated fatty acids and vitamin C. Comparison between the chemical composition of Phaeocystis sp. and copepod faecal pellets showed that the copepods were feeding predominantly on other phytoplankton.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baash, K.-H., Kohlhose, M. & Pohl, P., 1984. Axenic mass culture of prokaryotic and eukaryotic microalgae and lipid production: influence of the temperature and of the nitrate concentration in the nutrient medium. Developments in Plant Biology, 9, 587590.Google Scholar
Barje, M. & Michaelis, H. 1986. Phaeocystis pouchetii blooms in the East Frisian coastal waters (German Bight, North Sea). Marine Biology, 93, 2127.Google Scholar
Barnard, W.R., Andreae, M.O. & Iverson, R.L., 1984. Dimethylsulfide and Phaeocystis pouchetii in the southeastern Bering Sea. Continental Shelf Research, 3, 103113.CrossRefGoogle Scholar
Ben, Mlih F. & Marty, J.-C., 1989. Les acides gras marqueurs du potentiel nutritionnel des particules marines pour la survie des larves de poissons en Atlantique Nord. Oceanis, in press.Google Scholar
Berman, T. & Kimor, B., 1983. A large-scale filtration apparatus for net plankton sampling. Journal of Plankton Research, 5, 111116.CrossRefGoogle Scholar
Bjørnland, T., Guillard, R.R.L. & Liaaen-Jensen, S., 1988. Phaeocystis sp. clone 677–3. A tropical marine planktonic prymnesiophyte with fucoxanthin and 19'-acyloxyfucoxanthins as chemo- systematic carotenoid markers. Biochemical Systematics and Ecology, 16, 445452.CrossRefGoogle Scholar
Cadée, G.C. & Hegeman, J., 1986. Seasonal and interannual variation of Phaeocystis pouchetii (Haptophyceae) in the westernmost inlet of the Wadden Sea during the 1973 to 1985 period. Netherlands Journal of Sea Research, 20, 2936.CrossRefGoogle Scholar
Claustre, H., 1987. Variations de la Composition Biochimique du Phytoplancton sous I'Effet des Changements du Milieu. Thèse de l'Université P. & M. Curie, Paris.Google Scholar
Claustre, H., Marty, J.-C., Cassiani, L. & Dagaut, J., 1988. Fatty acid dynamics in phytoplankton and microzooplankton communities during a spring bloom in the coastal Ligurian Sea: ecological implications. Marine Microbial Food Webs, 3, 5166.Google Scholar
Claustre, H., Marty, J.-C. & Cassiani, L., 1989. Intraspecific differences in the biochemical composition of a diatom during a spring bloom in Villefranche-sur-mer Bay, Mediterranean Sea. Journal of Experimental Marine Biology and Ecology, 129, 1732.CrossRefGoogle Scholar
Cowles, T.J., Olson, R.J. & Chisholm, S.W., 1988. Food selection by copepods: discrimination on the basis of food quality. Marine Biology, 100, 4149.CrossRefGoogle Scholar
Dagg, M.J., Vidal, J., Whitledge, T.E., Iverson, R.L. & Goering, J.J., 1982. The feeding, respiration and excretion of zooplankton in the Bering Sea during a spring bloom. Deep-Sea Research, 29, 4563.CrossRefGoogle Scholar
Dall, W. & Moriarty, D.J.W., 1983. Functional aspects of nutrition and digestion. In The Biology of Crustacea, vol. 5. Internal Anatomy and Physiological Regulation (ed. L.H., Mantel), pp. 215261. New York: Academic Press.Google Scholar
Gieskes, W.W. & Kraay, G.W., 1986. Analysis of phytoplankton pigments by HPLC before, during and after mass occurrence of the microflagellate Corymbellus aureus during the spring bloom in the open northern North Sea in 1983. Marine Biology, 92, 4552.Google Scholar
Gieskes, W.W.C., Kraay, G.W., Nontji, A., Setiapermana, D. & Sutomo, ., 1988. Monsoonal alternation of a mixed and a layered structure in the phytoplankton of the euphotic zone of the Banda Sea (Indonesia): a mathematical analysis of algal pigment fingerprints. Netherlands Journal of Sea Research, 22, 123137.CrossRefGoogle Scholar
Hapette, A.M. & Poulet, S.A., 1989. Application of high-performance liquid chromatography to the determination of ascorbic acid in marine plankton. Journal of Liquid Chromatography, in press.CrossRefGoogle Scholar
Hooks, C.E., Bidigare, R.R., Keller, M.D. & Guillard, R.R.L., 1988. Coccoid eukaryotic marine ultraplankters with four different HPLC pigment signatures. Journal ofPhycology, 24, 571580.CrossRefGoogle Scholar
Huntley, M., Tande, K. & Eilertsen, H.C., 1987. On the trophic fate of Phaeocystis pouchetii (Hariot). II. Grazing rates of Calanus hyperboreus (Krayer) on diatoms and different size categories of Phaeocystis pouchetii. Journal of Experimental Marine Biology and Ecololgy, 110, 197212.CrossRefGoogle Scholar
Jeffrey, S.W. & Wright, S.W., 1987. A new spectrally distinct component in preparations of chlorophyll c from the microalga Emiliania huxleyi (Prymnesiophyceae). Biochimica et Biophysica Acta, 894, 180189.CrossRefGoogle Scholar
Joseph, J.D., 1975. Identification of 3, 6, 9, 12, 15 octadecapentanoic acid in laboratory-cultured photosynthetic dinoflagellates. Lipids, 10, 395403.CrossRefGoogle Scholar
Lancelot, C., Billen, G., Sournia, A., Weisse, T., Colijn, F., Veldhuis, M.J.W., Davies, A. & Wassmann, P., 1987. Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. Ambio, 16, 3846.Google Scholar
Lancelot, C. & Mathot, S., 1985 Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short- and long-term incubations with 14C-bicarbonate. II. Phaeocystis pouchetii colonial populations. Marine Biology, 86, 227232.CrossRefGoogle Scholar
Lancelot, C. & Mathot, S., 1987. Dynamics of a Phaeocystis pouchetii-dominated spring bloom in Belgian coastal waters. I. Phytoplanktonic activities and related parameters. Marine Ecology - Progress Series, 37, 239248.CrossRefGoogle Scholar
Lindroth, P. & Mopper, K., 1979. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with O- phthaldialdehyde. Analytical Chemistry, 51, 16671674.Google Scholar
Mantoura, R.F.C. & Llewellyn, C., 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase highperformance liquid chromatography. Analytica Chimica Acta, 151, 297314.CrossRefGoogle Scholar
Martens, P., 1980. Beitrage zum mezooplankton des Nordsylter Wattenmeeres. Helgoländer Wissenshaftliche Meeresuntersuchungen, 34, 4153.CrossRefGoogle Scholar
Neal, A.C., Prahl, F.G., Eglinton, G., O'hara, S.C.M. & Corner, E.D.S., 1986. Lipid changes during a planktonic feeding sequence involving unicellular algae, Elminius nauplii and adult Calanus. Journal of the Marine Biological Association of the United Kingdom, 66, 113.CrossRefGoogle Scholar
Nichols, P.D., Volkman, J.K. & Johns, R.B., 1983. Sterols and fatty acids of the marine unicellular alga FCRG 51. Phytochemistry, 22, 14471452.Google Scholar
Owens, N.J.P., Cook, D., Colebrook, M., Hunt, H. & Reid, P.C., 1989. Long term trends in the occurrence of Phaeocystis sp. in the north-east Atlantic. Journal of the Marine Biological Association of the United Kingdom, 69, 813821.CrossRefGoogle Scholar
Piters, H., Kluytmans, J.H., Zandee, D.I. & Cadee, G.C., 1980. Tissue composition and reproduction of Mytilus edulis in relation to food availability. Netherlands Journal of Sea Research, 14, 349361.Google Scholar
Poulet, S.A., Harris, R.P., Martin-Jézéquel, V., Moal, J. & Samain, J.F., 1986. Free amino acids in copepod faecal pellets. Oceanologica Acta, 9, 191197.Google Scholar
Prahl, F.G., Eglinton, G., Corner, E.D.S., O'hara, S.C.M. & Forsberg, T.E.V., 1984. Changes in plant lipids during passage through the gut of Calanus. Journal of the Marine Biological Association of the United Kingdom, 64, 317334.CrossRefGoogle Scholar
Rogers, S.I. & Lockwood, S.J., 1990. Observations on coastal fish fauna during a spring bloom of Phaeocystis pouchetii (Hariot) in the eastern Irish Sea. Journal of the Marine Biological Association of the United Kingdom, 70, in press.Google Scholar
Sargent, J.R., Eilertsen, H.C., Falk-Petersen, S. & Taasen, J.P., 1985. Carbon assimilation and lipid production in phytoplankton in northern Norwegian fjords. Marine Biology, 85,109116.CrossRefGoogle Scholar
Sato, N. & Murata, N., 1980. Temperature shift-induced responses in lipids in the blue-green alga Anabaena variabilis. The central role of diacylmonogalactosyl glycerol in thermo-adaptation. Biochimica et Biophysica Acta, 619, 353366.CrossRefGoogle ScholarPubMed
Sournia, A., 1988. Phaeocystis (Prymnesiophyceae): how many species? Nova Hedwigia, 47, 211217.Google Scholar
Tande, K.S. & Bamstedt, U., 1987. On the trophic fate of Phaeocystis pouchetii. I. Copepod feeding rates on solitary cells and colonies of P. pouchetii. Sarsia, 72, 313320.Google Scholar
Veldhuis, M.J.W. & Admiraal, W., 1985. Transfer of photosynthetic products in gelatinous colonies of Phaeocystis pouchetii (Haptophyceae) and its effect on the measurement of excretion rate. Marine Ecology - Progress Series, 26, 301304.CrossRefGoogle Scholar
Verity, P.G., Villareal, T.A. & Smayda, T.J., 1988 a. Ecological investigations of blooms of colonial Phaeocystis pouchetii. I. Abundance, biochemical composition, and metabolic rates. Journal of Plankton Research, 10, 219248.Google Scholar
Verity, P.G., Villareal, T.A. & Smayda, T.J., 1988 b. Ecological investigations of blooms of colonial Phaeocystis pouchetii. II. The role of life-cycle phenomena in bloom termination. Journal of Plankton Research, 10, 749766.CrossRefGoogle Scholar
Vesk, M. & Jeffrey, S.W., 1987. infrastructure and pigments of two strains of the picoplanktonic alga Pelagococcus subviridis (Crysophyceae). Journal of Phycology, 23, 322336.Google Scholar
Volkman, J.K., Smith, D.J., Eglinton, G., Forsberg, T.E.V. & Corner, E.D.S., 1981. Sterol and fatty acid composition of four marine haptophycean algae. Journal of the Marine Biological Association of the United Kingdom, 61, 509527.Google Scholar
Volkman, J.K., Burger-Wiersma, T., Nichols, P.D. & Summons, R.E., 1988. Lipids and chemotax- onomy of Prochlorothrix hollandica, a planktonic prokaryote containing chlorophylls a and b. Journal of Phycology, 24, 554559.Google Scholar
Weisse, T., 1983. Feeding of calanoid copepods in relation to Phaeocystis pouchetii blooms in the German Wadden Sea area off Sylt. Marine Biology, 74, 8794.CrossRefGoogle Scholar
Wright, S.W., Jeffrey, S.W., 1987. Fucoxanthin pigment markers of marine phytoplankton analysed by HPLC and HPTLC. Marine Ecology - Progress Series, 38,259266.CrossRefGoogle Scholar