Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T14:07:36.471Z Has data issue: false hasContentIssue false

The Bacterial Endosymbiosis of the Gutless Nematode, Astomonema Southwardorum: Ultrastructural Aspects

Published online by Cambridge University Press:  11 May 2009

Olav Giere
Affiliation:
Zoologisches Institut und Zoologisches Museum, Universität Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
Reinhard Windoffer
Affiliation:
†Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB
Eve C. Southward
Affiliation:
†Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB

Extract

The recently described gutless Astomonema southwardorum Austen, Warwick & Ryan 1993, from North Sea methane seeps lives in symbiosis with oval, extracellular bacteria completely filling the lumen of a modified gut. The bacterial strand is tightly lined by a thin layer representing very long intestinal cells of the host. The bacteria are 5.5–6.0 µm in maximum length and 3.5–4.0 µm in width. In the anterior body the alimentary tract is completely reduced. The structure and size of the symbiotic prokaryotes, as well as their extracellular location in the lumen of a non-functional gut, differ substantially from those in A. jenneri, the single species of this genus thoroughly studied electron-microscopically (Ott et al., 1982). These structural discrepancies suggest a careful reassessment of the genus Astomonema.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austen, M.C., Warwick, R.M. & Ryan, K.P., 1993. Astomonema southwardorum sp. nov., a gutless nematode dominant in a methane seep area in the North Sea. Journal of the Marine Biological Association of the United Kingdom, 73, 627634.Google Scholar
Bird, A.F. & Bird, J., 1991. The structure of nematodes, 2nd ed. San Diego: Academic Press.Google Scholar
Boaden, P.J.S., 1975. Anaerobiosis, meiofauna and early metazoan evolution. Zoologica Scripta, 4, 2124.CrossRefGoogle Scholar
Bosch, C. & Grassé, P.-P., 1984. Cycle partiel des bactéries chimiautotrophes symbiotiques et leurs rapports avec les bactériocytes chez Riftia pachyptila Jones (Pogonophore Vestimentifere). II. L'évolution des bactéries symbiotiques et des bactériocytes. Comptes Rendus de I'Academie des Sciences. Paris, 299, série III, 10, 413419.Google Scholar
Cavanaugh, Cm., 1983. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature, London, 302, 5861.CrossRefGoogle Scholar
Cavanaugh, Cm., 1985. Symbiosis of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bulletin of the Biological Society of Washington, no. 6, 373388.Google Scholar
Cavanaugh, Cm., Levering, R.R., Maki, J.S., Mitchell, R. & Lidstrom, M.E., 1987. Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature, London, 325, 346348.CrossRefGoogle Scholar
Dando, P.R. et al., 1991. Ecology of a North Sea pock mark with an active methane seep. Marine Ecology Progress Series, 70, 4963.CrossRefGoogle Scholar
Dubilier, N., Giere, O. & Grieshaber, M.K., in press. Morphological and ecophysiological adaptations of the marine oligochaete Tubificoides benedii to sulfidic sediments. American Zoologist.Google Scholar
Duffy, J.E. Lll & Tyler, S., 1984. Quantitative differences in mitochondrial ultrastructure of a thiobiotic and an oxybiotic turbellarian. Marine Biology, 83, 95102.CrossRefGoogle Scholar
Fisher, C.R., 1990. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Reviews in Aquatic Sciences, 2, 399436.Google Scholar
Fisher, C.R., Brooks, J.M., Vodenichar, J.S., Zandé, J.M., Childress, J.J. & Burke, R.A. Jr, 1993. The co-occurrence of methanotrophic and chemoautotrophic sulphur-oxidizing bacterial symbionts in a deep-sea mussel. Pubblicazioni della Stazione Zoologica di Napoli. Marine Ecology, 14, 277289.Google Scholar
Fisher, C.R., Childress, J.J., Oremland, R.S. & Bidigare, R.R., 1987. The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Marine Biology, 96, 5971.Google Scholar
Giere, O. & Langheld, C., 1987. Structural organization, transfer and biological fate of endosym-biotic bacteria in gutless oligochaetes. Marine Biology, 93, 641650.CrossRefGoogle Scholar
Giere, O., Rhode, B. & Dubilier, N., 1988. Structural peculiarities of the body wall of Tubificoides benedii (Oligochaeta) and possible relations to its life in sulphidic sediments. Zoomorphology, 108, 2939.CrossRefGoogle Scholar
Hope, D.W., 1977. Gutless nematodes of the deep-sea. Mikrofauna des Meeresbodens, 61, 307308.Google Scholar
Jensen, P., 1986. Nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. IV. Ecological aspects. Marine Biology, 92, 489503.CrossRefGoogle Scholar
Jensen, P., 1987. Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes. Oecologia, 71, 564567.CrossRefGoogle ScholarPubMed
Kito, K., 1989. A new mouthless marine nematode from Fiji. Journal of Natural History, 23, 635642.CrossRefGoogle Scholar
McDowell, E.M. & Trump, B.F., 1976. Histologic fixatives suitable for diagnostic light and electron microscopy. Archives of Pathology and Laboratory Medicine, 100, 505514.Google ScholarPubMed
Ott, J., Rieger, G., Rieger, R. & Enderes, F., 1982. New mouthless interstitial worms from the sulphide system: symbiosis with prokaryotes. Pubblicazioni della Stazione Zoologica di Napoli. Marine Ecology, 3, 313333.Google Scholar
Rieger, R.M., Rieger, G.E., Tyler, S. & Powell, E.N., 1987. Fine structure of mitochondria in meiobenthic organisms of the marine thiobios. American Zoologist, 27, 41A.Google Scholar
Riemann, F., 1993. The mouthless deep-sea nematode Rhaptothyreus minor sp. n. (Rhaptothyreidae, mermithoid nematodes of uncertain systematic position). Zoologica Scripta, 22, 341346.Google Scholar
Southward, E.C, 1986. Gill symbionts in thyasirids and other bivalve molluscs. Journal of the Marine Biological Association of the United Kingdom, 66, 889914.CrossRefGoogle Scholar
Southward, E.C, 1987. Contribution of symbiotic chemoautotrophs to the nutrition of benthic invertebrates. In Microbes of the sea (ed. M.A., Sleigh), pp. 83118. New York: Wiley & Sons.Google Scholar
Temara, A., Ridder, C. De, Kuenen, J.G. & Robertson, L.A., 1993. Sulphide-oxidizing bacteria in the burrowing echinoid, Echinocardium cordatum (Echinodermata). Marine Biology, 115, 179185.CrossRefGoogle Scholar
Thamdrup, B., Finster, K., Würgler, Hansen J. & Bak, F., 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron and manganese. Applied and Environ-mental Microbiology, 59, 101108.Google Scholar
Vetter, R.D., 1985. Elemental sulphur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Marine Biology, 88, 3342.CrossRefGoogle Scholar
Vidakovic, J. & Boucher, G., 1987. Gutless marine nematodes of the marine genus Astomonema Ott et al., 1982. Cahiers de Biologie Marine, 28, 111120.Google Scholar