Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T15:59:20.259Z Has data issue: false hasContentIssue false

Association between luminous bacteria and Hydrozoa in the northern Ionian Sea

Published online by Cambridge University Press:  13 September 2011

Cinzia Gravili*
Affiliation:
Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, I-73100 Lecce, Italia
Ferdinando Boero
Affiliation:
Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, I-73100 Lecce, Italia Istituto di Scienze Marine, Sezione di Genova, CNR, I-16127 Genova, Italia
Pietro Alifano
Affiliation:
Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, I-73100 Lecce, Italia
Loredana Stabili
Affiliation:
Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, I-73100 Lecce, Italia Istituto Ambiente Marino Costiero, Sezione di Taranto, CNR, I-74100 Taranto, Italia
*
Correspondence should be addressed to: C. Gravili, Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, I-73100 Lecce, Italia email: [email protected]

Abstract

Several hydroid species live associated with many organisms, including bacteria. Hydroid–bacteria associations were searched for in twenty Hydrozoa species that were collected in the northern Ionian Sea and observed under blue light excitation. Of these, six showed high fluorescence on the outer perisarc, five appeared medium fluorescent, four were slightly fluorescent, and five did not show any fluorescence. Luminous bacteria were isolated and counted from the surface of the fluorescent hydroids. Their association with hydrozoan species could be explained by their feeding activity on the chitinous structures of the perisarc, as previous research on the hydroid Aglaophenia octodonta showed. Moreover, microalgae were always recovered together with luminous bacteria in the strongly, medium and slightly fluorescent hydroids. Further studies will be undertaken to characterize the luminous bacteria isolated from the surface of the examined hydrozoans as well as to better understand whether their interaction with hydroids is only related to chitin utilization or if their coexistence with microalgae in hydrozoans has an ecological meaning.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bavestrello, G., Cerrano, C., Cattaneo Vietti, R. and Sarà, M. (1996) Relation between Eudendrium glomeratum (Cnidaria, Hydromedusae) and its associated vagile fauna. In Piraino, S., Boero, F., Bouillon, J., Cornelius, P.F.S. and Gili, J.M. (eds) Advances in Hydrozoan Biology. Scientia Marina 60, 137143.Google Scholar
Bavestrello, G., Cerrano, C., Di Camillo, C., Puce, S., Romagnoli, T., Tazioli, S. and Totti, C. (2008) The ecology of protists epibiontic on marine hydroids. Journal of the Marine Biological Association of the United Kingdom 88, 16111617.CrossRefGoogle Scholar
Boero, F. and Bouillon, J. (2005) Cnidaria and Ctenophora. In Rhode, K. (ed.) Marine parasitology. Collingwood: CSIRO Publishing, pp. 177182.Google Scholar
Boettcher, K.J. and Ruby, E.G. (1990) Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. Journal of Bacteriology 172, 37013706.CrossRefGoogle ScholarPubMed
Bouillon, J., Gravili, C., Pagés, F., Gili, J.-M. and Boero, F. (2006) An introduction to Hydrozoa. Mémoires du Muséum National d'Histoire Naturelle 194, 1591.Google Scholar
Bouillon, J., Medel, M.D., Pagès, F., Gili, J.-M., Boero, F. and Gravili, C. (2004) Fauna of the Mediterranean Hydrozoa. Scientia Marina 68 (Supplement 2), 5438.CrossRefGoogle Scholar
Chapman, G. (1974) The skeletal system. In Muscatine, L. and Lenhoff, H.M. (eds) Coelenterate biology: reviews and new perspectives. New York: Academic Press, p. 93128.CrossRefGoogle Scholar
Danovaro, R., Manini, E. and Dell'Anno, A. (2002) Higher abundance of bacteria than of viruses in deep Mediterranean sediments. Applied and Environmental Microbiology 68, 14681472.CrossRefGoogle ScholarPubMed
DeLoney, C.R., Bartley, T.M. and Visick, K.L. (2002) Role for phosphoglucomutase in Vibrio fischeri–Euprymna scolopes symbiosis. Journal of Bacteriology 184, 51215129.CrossRefGoogle ScholarPubMed
Di Camillo, C., Bo, M., Lavorato, A., Morigi, C., Reinach, M.S., Puce, S. and Bavestrello, G. (2008) Foraminifers epibiontic on Eudendrium (Cnidaria: Hydrozoa) from the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 88, 485489.CrossRefGoogle Scholar
Di Camillo, C., Puce, S., Romagnoli, T., Tazioli, S., Totti, C. and Bavestrello, G. (2005) Relationships between benthic diatoms and hydrozoans (Cnidaria). Journal of the Marine Biological Association of the United Kingdom 85, 13731380.CrossRefGoogle Scholar
Di Camillo, C., Puce, S., Romagnoli, T., Tazioli, S., Totti, C. and Bavestrello, G. (2006) Coralline algae epibionthic on thecate hydrozoans (Cnidaria). Journal of the Marine Biological Association of the United Kingdom 86, 12851289.CrossRefGoogle Scholar
Gorelova, O.A., Baulina, O.I., Lobakova, E.S. and Kosevich, I.A. (2010) Interaction of epibiotic microorganisms with thecate hydroids. In 7th Workshop of the Hydrozoan Society, Porto Cesareo, Lecce (Italy), 10–18 September 2010.Google Scholar
Gravili, C., Boero, F. and Licandro, P. (2008) Hydrozoa. In Relini, G. (ed.) Checklist della flora e della fauna dei mari italiani (Parte I). Biologia Marina Mediterranea 15, 7191.Google Scholar
Haddock, S.H.D., Moline, M.A. and Case, J.F. (2010) Bioluminescence in the sea. Annual Review of Marine Science 2, 293343.CrossRefGoogle ScholarPubMed
Harder, T. (2008) Marine epibiosis: concepts, ecological consequences and host defence. Heidelberg: Springer.Google Scholar
Hood, M.A. and Meyers, S.P. (1977) Microbiological and chitinoclastic activities associated with Penaeus setiferus. Journal of the Oceanographic Society of Japan 33, 235241.CrossRefGoogle Scholar
Knight, D.P. (1968) Cellular basis for quinone tanning of the perisarc in the thecate hydroid Campanularia (= Obelia) flexuosa Hinks. Nature, London 218, 584586.CrossRefGoogle Scholar
Knight, D.P. (1970a) Sclerotization of the perisarc of the calyptoblastic hydroid Laomedea flexuosa. 1. Identification and localisation of dopamine in the hydroid. Tissue and Cell 2, 467477.CrossRefGoogle ScholarPubMed
Knight, D.P. (1970b) Tanning cells in a thecate hydroid Campanularia flexuosa. Proceedings of the Challenger Society 4, 6061.Google Scholar
Maldonado, M., Sánchez-Tocino, L. and Navarro, C. (2010) Recurrent disease outbreaks in corneous demosponges of the genus Ircinia: epidemic incidence and defense mechanisms. Marine Biology 157, 15771590.CrossRefGoogle Scholar
McCann, J., Stabb, E.V., Millikan, D.S. and Ruby, E.G. (2003) Population dynamics of Vibrio fischeri during infection of Euprymna scolopes. Applied and Environmental Microbiology 69, 59285934.CrossRefGoogle ScholarPubMed
Nealson, K. and Hastings, J. (2006) Quorum sensing on a global scale: massive numbers of bioluminescent bacteria make milky seas. Applied and Environmental Microbiology 72, 22952297.CrossRefGoogle ScholarPubMed
Ramesh, A. and Venugopalan, V.K. (1984) Colloque International de bactériologie marine. Actes de colloques. Brest: IFREMER, CNRS, 5 pp.Google Scholar
Riedl, R. (1970) Fauna und Flora der Adria. 2nd edition. Hamburg & Berlin: Verlag Paul Parey.Google Scholar
Romagnoli, T., Bavestrello, G., Cucchiari, E.M., De Stefano, M., Di Camillo, C.G., Pennesi, C., Puce, S. and Totti, C. (2007) Microalgal communities epibiontic on the marine hydroid Eudendrium racemosum in the Ligurian Sea during an annual cycle. Marine Biology 151, 537552.CrossRefGoogle Scholar
Ruby, E.G. and Lee, K.-H. (1998) The Vibrio fischeri–Euprymna scolopes light organ association: current ecological paradigms. Applied and Environmental Microbiology 64, 805812.CrossRefGoogle ScholarPubMed
Siqueiros-Beltrones, D.A., Serviere-Zaragoza, E. and Argumedo-Hernandez, U. (2001) First record of the diatom Cocconeis notata Petit living inside the hydrotheca of a hydrozoan epiphyte of Macrocystis pyrifera (L.) C. Ag. Oceanides 16, 135138.Google Scholar
Stabili, L., Gravili, C., Boero, F., Tredici, S.M. and Alifano, P. (2010) Susceptibility to antibiotics of Vibrio sp. AO1 growing in pure culture or in association with its hydroid host Aglaophenia octodonta (Cnidaria, Hydrozoa). Microbial Ecology 59, 555562.CrossRefGoogle ScholarPubMed
Stabili, L., Gravili, C., Piraino, S., Boero, F. and Alifano, P. (2006) Vibrio harveyi associated with Aglaophenia octodonta (Hydrozoa, Cnidaria). Microbial Ecology, New York 52, 603608.CrossRefGoogle ScholarPubMed
Stabili, L., Gravili, C., Tredici, S.M., Piraino, S., Talà, A., Boero, F. and Alifano, P. (2008) Epibiotic Vibrio luminous bacteria isolated from some Hydrozoa and Bryozoa species. Microbial Ecology 56, 625636.CrossRefGoogle ScholarPubMed
Svoboda, A. (1979) Beitrag zur Okologie, Biometrie und Systematik der Mediterranen Aglaophenia Arten (Hydroidea). Zoologische Verhandelingen, Leiden 167, 1114.Google Scholar
Svoboda, A. and Cornelius, P.F.S. (1991) The European and Mediterranean species of Aglaophenia (Cnidaria: Hydrozoa). Zoologische Verhandelingen, Leiden 274, 172.Google Scholar
Vezzulli, L., Previati, M., Pruzzo, C., Marchese, A., Bourne, D.G., Cerrano, C. and the Vibrio Sea Consortium (2010) Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environmental Microbiology 12, 20072019.CrossRefGoogle Scholar
Visick, K.L. and McFall-Ngai, M.J. (2000) An exclusive contract: specificity in the Vibrio fischeri–Euprymna scolopes partership. Journal of Bacteriology 182, 17791787.CrossRefGoogle Scholar
Waters, C.M. and Bassler, B.L. (2005) Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology 21, 319346.CrossRefGoogle ScholarPubMed
Whistler, C.A. and Ruby, E.G. (2003) GacA regulates symbiotic colonization traits of Vibrio fischeri and facilitates a beneficial association with an animal host. Journal of Bacteriology 185, 72027212.CrossRefGoogle ScholarPubMed