Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T15:12:35.893Z Has data issue: false hasContentIssue false

Are biochemical composition parameters of sediment good tools for assessing the environmental quality of estuarine areas in tropical systems?

Published online by Cambridge University Press:  06 November 2017

Fred B. Silva
Affiliation:
Departamento de Zoologia, Centro de Ciências Biológicas (CCB), Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo s/n, Cidade Universitária, 50670-420 - Recife, PE, Brazil
Janilson F. Silva
Affiliation:
Departamento de Bioquímica, Laboratório de Enzimologia (LABENZ), Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo s/n, Cidade Universitária, 50670-420 – Recife, PE, Brazil
Ranilson S. Bezerra
Affiliation:
Departamento de Bioquímica, Laboratório de Enzimologia (LABENZ), Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo s/n, Cidade Universitária, 50670-420 – Recife, PE, Brazil
Paulo J. P. Santos*
Affiliation:
Departamento de Zoologia, Centro de Ciências Biológicas (CCB), Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo s/n, Cidade Universitária, 50670-420 - Recife, PE, Brazil
*
Correspondence should be addressed to: P. J. P. Santos, Departamento de Zoologia, Centro de Ciências Biológicas (CCB), Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo s/n, Cidade Universitária, 50670-420 – Recife, PE, Brazil email: [email protected]

Abstract

The present study aims to assess the environmental quality of six estuaries in north-eastern Brazil, using biochemical composition and quantity of organic matter in tropical sediments. Samples were collected monthly during spring low tide from August 2011 to July 2012, in the mid-littoral. Concentrations of organic matter and its biochemical composition reflected the degree of anthropogenic pressure. Although total concentrations of proteins and carbohydrates were similar among estuaries with contrasting levels of anthropogenic pressure, the protein to carbohydrates (PRT : CHO) ratio effectively reflected the trophic state of these areas. PRT : CHO ratios >1 were observed in all studied areas suggesting eutrophic conditions or an initial stage of eutrophication in all of them. Low Chl-a/Phaeo ratios may be associated with the level of eutrophication of each area, however it may also reflect the natural productivity or the presence of mangrove debris. These results were compared with those obtained in previous environmental assessments of the same estuarine areas using the AZTI Marine Biotic Index and monitoring reports showing good agreement. The present study confirmed for the first time in tropical estuarine areas that the biochemical approach can be successfully used to assess the trophic state of the benthic compartment.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alongi, D.M. (2009) The energetics of mangrove forests. New York, NY: Springer.Google Scholar
Angelidis, M.O. and Aloupi, M. (2001) Geochemical study of coastal sediments influenced by river-transported pollution: southern Evoikos Gulf, Greece. Marine Pollution Bulletin 40, 7782.Google Scholar
Araújo, J.M.C., Otero, X.L., Marques, A.G.B., Nóbrega, G.N., Silva, J.R.F. and Ferreira, T.O. (2012) Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani. Geo-Marine Letters 32, 289300.Google Scholar
Bhadauria, S., Sengar, R.M.S., Mitaal, S. and Bhattacharjee, S. (1992) Effect of petroleum hydrocarbons on algae. Journal of Phycology 28, 316.Google Scholar
Bianchi, T.S. and Rice, D.L. (1988) Feeding ecology of Leitoscoloplos fragilis. II. Effects of worm density on benthic diatom production. Marine Biology 99, 123131.Google Scholar
Borja, A., Dauer, D.M., Díaz, R.J., Llansó, R.J., Muxika, I., Rodríguez, J.G. and Schaffner, L.C. (2008) Assessing estuarine benthic quality conditions in Chesapeake Bay: a comparison of three indices. Ecological Indicators 8, 395403.Google Scholar
Borja, A. and Muxika, I. (2005) Guidelines for the use of AMBI (AZTI's Marine Biotic Index) in the assessment of the benthic ecological quality. Marine Pollution Bulletin 50, 787789.Google Scholar
Brady, N.C. (1990) The nature and properties of soils, 10th edition. New York, NY: Macmillan Publishing Company.Google Scholar
Braga, C.C., Macedo, M.J.H., Siva, B.B. and Braga, R.C. (2012) Aplicação dos componentes principais na simulação e consistência de séries temporais. Revista de Geografia (UFPE) 29, 113125.Google Scholar
Cabral, A.L., Sassi, R. and Costa, C.F. (2006) A pesca de subsistência no estuário do rio Timbó, estado de Pernambuco, Brasil. Boletim Técnico Científico do CEPENE 14, 111140.Google Scholar
Cadée, G.C. and Hegeman, J. (1974) Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Netherlands Journal of Sea Research 8, 260291.Google Scholar
Cahoon, L.B. and Cooke, J.E. (1992) Benthic microalgal production in Onslow Bay, North Carolina, USA. Marine Ecology Progress Series 2, 185196.Google Scholar
Cloern, J.E. (2001) Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210, 223253.Google Scholar
Colijn, F. and Dijkema, K.S. (1981) Species composition of benthic diatoms and distribution of chlorophyll-a on an intertidal flat in the Dutch Wadden Sea. Marine Ecology Progress Series 4, 921.Google Scholar
Cotano, U. and Villate, F. (2006) Anthropogenic influence on the organic fraction of sediments in two contrasting estuaries: a biochemical approach. Marine Pollution Bulletin 52, 404414.Google Scholar
CPRH (2006) Relatório de Monitoramento de Bacias Hidrográficas do Estado de Pernambuco – 2005. Agência Estadual de Meio Ambiente, Recife, 90 pp.Google Scholar
Danovaro, R., Fabiano, M. and Della Croce, N. (1993) Labile organic matter and microbial biomass in deep-sea sediments (Eastern Mediterranean Sea). Deep-Sea Research 40, 953965.Google Scholar
Danovaro, R., Marrale, D., Della Croce, N., Parodi, P. and Fabiano, M. (1999) Biochemical composition of sedimentary organic matter and bacterial distribution in the Aegean Sea: trophic state and pelagic-benthic coupling. Journal of Sea Research 42, 117129.Google Scholar
Dauvin, J.C. and Ruellet, T. (2009) The estuarine quality paradox: is it possible to define an ecological quality status for specific modified and naturally stressed estuarine ecosystems? Marine Pollution Bulletin 59, 3847.Google Scholar
Davis, M.W. and McIntyre, C.D. (1983) Effects of physical gradients on the production dynamics of sediment associated algae. Marine Ecology Progress Series 13, 103114.Google Scholar
de Jong, D.J. and de Jonge, V.N. (1995) Dynamics of microphytobenthos chlorophyll-a in the Western Scheldt estuary (SW Netherlands). Hydrobiologia 311, 2130.Google Scholar
de Jonge, V.N. (2011) Relations between annual dredging activities, suspended matter concentrations, and the development of the tidal regime in the Ems Estuary. Canadian Journal of Fisheries and Aquatic Sciences 40, 89300.Google Scholar
Dell'Anno, A., Mei, M.L., Pusceddu, A. and Danovaro, R. (2002) Assessing the trophic state and eutrophication of coastal marine systems: a new approach based on the biochemical composition of sediment organic matter. Marine Pollutution Bulletin 44, 611622.Google Scholar
Dubois, M., Gilles, K., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350356.Google Scholar
Duke, N.C., Meynecke, J.O., Dittmann, S., Ellison, A.M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K.C., Field, C.D., Koedam, N., Lee, S.Y., Marchand, C., Nordhaus, I. and Dahdouh-Guebas, F. (2007) A world without mangroves? Science 317, 4142.Google Scholar
Elliott, M. and Quintino, V. (2007) The Estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine Pollution Bulletin 54, 640645.Google Scholar
Erftemeijer, P.L.A. and Lewis, R.R.R. (2006) Environmental impacts of dredging on seagrasses: a review. Marine Pollution Bulletin 52, 15531572.Google Scholar
Fabiano, M., Danovaro, R. and Fraschetti, S. (1995) Temporal trend analysis of the elemental composition of the sediment organic matter in subtidal sandy sediments of the Ligurian Sea (NW Mediterranean): a three years study. Continental Shelf Research 15, 14531469.Google Scholar
Garcia-Rodriguez, F., del Puerto, L., Venturini, N., Pita, A.L., Brugnoli, E., Burone, L. and Muniz, P. (2011) Diatoms, protein and carbohydrate sediment content as proxies for coastal eutrophication in Montevideo, Rio de la Plata estuary, Uruguay. Brazilian Journal of Oceanography 59, 293310.Google Scholar
Gerchacov, S.M. and Hatcher, P.G. (1972) Improved technique for analysis of carbohydrates in the sediment. Limnology and Oceanography 17, 938943.Google Scholar
Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J. and Duke, N. (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20, 154159.Google Scholar
Gray, J.S. (1992) Eutrophication in the sea. In Columbo, G., Ferrari, I., Ceccherelli, V.U. and Rossi, R. (eds) Marine eutrophication and population dynamics. Fredensborg: Olsen and Olsen, pp. 315.Google Scholar
Gray, J.S., Wu, R.S.S. and Ying, Y.O. (2002) Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238, 249279.Google Scholar
Grizzle, R.E. and Penniman, C.A. (1991) Effects of organic enrichment on estuarine macrofaunal benthos: a comparison of sediment profile imaging and traditional methods. Marine Ecology Progress Series 74, 249262.Google Scholar
Kristensen, E. (2008) Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. Journal of Sea Research 59, 3043.Google Scholar
Kucuksezgin, F., Kontas, A., Altay, O., Uluturhan, E. and Darilmaz, E. (2006) Assessment of marine pollution in Izmir Bay: nutrient, heavy metal and total hydrocarbon concentrations. Environment International 32, 4151.Google Scholar
Lehman, P.W. (1992) Environmental factors associated with long-term changes in chlorophyll concentration in the Sacramento-San Joaquin Delta and Suisun Bay, California. Estuaries 15, 335348.Google Scholar
Lorenzen, C.J. (1967) Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12, 343346.Google Scholar
Lucas, C.H., Widdows, J., Brinsley, M.D., Salkeld, P.N. and Herman, P.M.J. (2000) Benthic-pelagic exchange of microalgae at a tidal flat. 1. Pigment analysis. Marine Ecology Progress Series 196, 5973.Google Scholar
Manini, E., Fabiano, M. and Danovaro, R. (2001) Benthic response to mucilaginous aggregates in the northern Adriatic Sea: biochemical indicators of eutrophication. Chemistry and Ecology 17, 171179.Google Scholar
Marques, V.S., Rao, V.B. and Molion, L.C.B. (1983) Inter-annual and seasonal variations in the structure and energetics of the atmosphere over northeast Brazil. Tellus 35, 136148.Google Scholar
Molion, L.C.B. and Bernardo, S.O. (2002) Uma revisão da dinâmica das chuvas no Nordeste Brasileiro. Revista Brasileira de Meteorologia 17, 110.Google Scholar
Monteiro, B.R. and Coelho-Filho, P.A. (2004) Estrutura populacional do caranguejo-uçá, Ucides cordatus (Linnaeus, 1763) (Crustacea, Decapoda, Ocypodidae), no estuário do rio Paripe, Itamaracá-Pernambuco. Boletim Técnico Científico do CEPENE 12, 99111.Google Scholar
Muniz, P., Venturini, N., Hutton, M., Kandratavicius, N., Pita, A., Brugnoli, E., Burone, L. and García-Rodríguez, F. (2011) Ecosystem health of Montevideo coastal zone: a multi approach using some different benthic indicators to improve a ten-year-ago assessment. Journal of Sea Research 65, 3850.Google Scholar
Murolo, P.P.A., Carvalho, P.V.V.C., Botter-Carvalho, M.L., Souza-Santos, L.P. and Santos, P.J.P. 2006 Spatio-temporal variations of microphytobenthos in the Botafogo and Siri estuaries (northeast-Brazil). Brazilian Journal of Oceanography 54, 1930.Google Scholar
Naidu, A.S. (1982) Aspects of distributions, clay mineralogy and geochemistry of sediments of the Beufort Sea and adjacent deltas, North Arctic Alaska. Final report BLM-NOAA OCSEAP office, Boulder, Colorado, 114 pp.Google Scholar
Nixon, S.W. (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41, 199219.Google Scholar
Pearson, T.H. (2001) Functional group ecology in soft-sediment marine benthos: the role of bioturbation. Oceanography and Marine Biology Annual Review 39, 233267.Google Scholar
Peterson, C.H. (2001) The Exxon Valdez oil spill in Alaska: acute, indirect and chronic effects on the ecosystem. Advances in Marine Biology 39, 1103.Google Scholar
Pinckney, J. (2006) System-scale nutrient fluctuations in Galveston Bay, Texas (USA). In Kromkamp, J.C., Brouwer, J.F.C., Blanchard, G.F., Forster, R.M. and Creách, V. (eds) Functioning of microphytobenthos in estuaries. Amsterdam: Royal Netherlands Academy of Arts and Sciences, pp. 141164.Google Scholar
Pusceddu, A., Dell'Anno, A., Danovaro, R., Manini, E., Sarà, G. and Fabiano, M. (2003) Enzymatically hydrolyzable protein and carbohydrate sedimentary pools as indicators of the trophic state of detritus sink systems: a case study in a Mediterranean coastal lagoon. Estuaries 26, 641650.Google Scholar
Pusceddu, A., Dell'Anno, A., Fabiano, M. and Danovaro, R. (2009) Quantity, biochemical composition and bioavailability of sediment organic matter as complementary signatures of benthic trophic status. Marine Ecology Progress Series 375, 4152.Google Scholar
Pusceddu, A., Gambi, C., Manini, E. and Danovaro, R. (2007) Trophic state, ecosystem efficiency and biodiversity of transitional aquatic ecosystems: analysis of environmental quality based on different benthic indicators. Chemistry and Ecology 23, 505515.Google Scholar
Pusceddu, A., Patrona, L.D. and Beliaeff, B. (2011) Trophic status of earthen ponds used for semi-intensive shrimp (Litopenaeus stylirostris, Stimpson, 1874) farming in New Caledonia (Pacific Ocean). Marine Environmental Research 72, 160171.Google Scholar
Signorini, A., Massini, G., Migliore, G., Tosoni, M., Varrone, C. and Izzo, G. (2008) Sediment biogeochemical differences in two pristine Mediterranean coastal lagoons (in Italy) characterized by different phanerogam dominance: a comparative approach. Aquatic Conservation: Marine and Freshwater Ecosystems 18, 2744.Google Scholar
Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. and Klenk, D.C. (1985) Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150, 7685.Google Scholar
Somerfield, P.J., Genevois, V.G., Rodrigues, A.C.L., Castro, F.J.V. and Santos, G.A.P. (2003) Factors affecting meiofaunal community structure in the Pina Basin, an urbanized embayment on the coast of Pernambuco, Brazil. Journal of the Marine Biological Association of the United Kingdom 83, 12091213.Google Scholar
Stefanou, P., Tsirsis, G. and Karydis, M. (2000) Nutrient scaling for assessing eutrophication. The development of a simulated normal distribution. Ecological Apllications 10, 303309.Google Scholar
Suguio, K. (1973) Introdução à Sedimentologia. Edgard Blücher, São Paulo, pp. 318.Google Scholar
Valença, A.P.M.C. and Santos, P.J.P. (2012) Macrobenthic community for assessment of estuarine health in tropical areas (Northeast, Brazil): review of macrofauna classification in ecological groups and application of AZTI Marine Biotic Index. Marine Pollution Bulletin 64, 18091820.Google Scholar
Venturini, N., Pita, A.L., Brugnoli, E., García-Rodríguez, F., Burone, L., Kandratavicius, N., Hutton, M. and Muniz, P. (2012) Benthic trophic status of sediments in a metropolitan area (Rio de la Plata estuary): linkages with natural and human pressures. Estuarine, Coastal and Shelf Science 112, 139152.Google Scholar
Vezzulli, L. and Fabiano, M. (2006) Sediment biochemical and microbial variables for the evaluation of trophic status along the Italian and Albanian continental shelves. Journal of the Marine Biological Association of the United Kingdom 86, 2737.Google Scholar
Vila Nova, F.V.P. and Torres, M.F.A. (2012) Avaliação ambiental em unidades de conservação: estuário do rio Maracaípe, Ipojuca-PE, Brasil. Revista de Geografia (UFPE) 29, 199224.Google Scholar
Wetzel, R.G. and Likens, G.E. (1990) Limnological analyses, 2nd edition. New York, NY: Springer-Verlag.Google Scholar