Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T14:20:28.032Z Has data issue: false hasContentIssue false

An analysis of the growth bands and ridges of barnacle shell plates

Published online by Cambridge University Press:  11 May 2009

Edwin Bourget*
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Anglesey, U.K.
Dennis J. Crisp
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Anglesey, U.K.
*
*Present address: INRS-Océanologie, 300, avenue des Ursulines, Rimouski, Québec, Canada.

Extract

Periodic structures indicating discontinuous growth of shell wall plates have been observed in thin sections of shell and on the outer surface of shell plates of many species of operculate (Bourget, 1975). When sectioned and etched the shell plates appear to be composed of successive thin layers of shell material, each layer consisting of a few rows of fine crystals. Where two layers are adjoined, a dark line, marking the junction of two incremental zones, is clearly visible. The thin layers of shell have been termed growth bands whereas the junction of adjoining layers will be referred to as the growth line.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, R. M., 1964. Microtextual variation in pelecypod shells. Malacologia, 2, 6986.Google Scholar
Bassindale, R., 1964. British barnacles. Synopses of the British Fauna, 14, 167.Google Scholar
Bocquet-Vedrine, J., 1963. Structure du test calcaire chez Chthamalus stellatus (Poli). Compte rendu de l' Academie des sciences, Paris, 257, 1350–2.Google Scholar
Bocquet-Vedrine, J., 1964. Relation entre la croissance basilaire du test du Cirripede opercule Elminius modestus Darwin et le cycle d'intermue de la masse viscerale. Compte rendu de VAcademie des sciences, Paris, 258, 5060–2.Google Scholar
Bocquet-Vedrine, J., 1965. Etude du tegument et de la mue chez le Cirripede opercule Elminius modestus Darwin. Archives de zoologie experimentale et generate, 105, 3076.Google Scholar
Bocquet-Vedrine, J., 1966a. Les soies et les expansions epineuses du test calcaire chez le cirripede opercule Acasta spongites (Poli). Archives de zoologie experimentale et generate, 107 (2), 337–48.Google Scholar
Bocquet-Vedrine, J., 1966b. Relation entre la croissance du test calcaire et le cycle d'intermue de la masse viscerale chez le Cirripede opercule Acasta spongites (Poli). Compte rendu de I'Acade'mie des sciences, Paris, 262, 2733–5.Google Scholar
Bourget, E., 1975. Shell structure in the Balanomorpha and its value in taxonomy (in preparation).Google Scholar
Bourget, E. & Crisp, D. J., 1975. Factors affecting deposition of the shell in Balanus balanoides (L.). Journal of the Marine Biological Association of the United Kingdom, 55, 231–49.CrossRefGoogle Scholar
Choe, S., 1963. Daily age markings on the shell of cuttle fishes. Nature, London, 197, 306–7.CrossRefGoogle Scholar
Clarke, G. R., 1968. Mollusk shell: daily growth lines. Science, New York, 161, 800–2.CrossRefGoogle Scholar
Costlow, J. D., 1956. Shell development in Balanus improvisus Darwin. Journal of Morphology, 99 359–98.CrossRefGoogle Scholar
Crisp, D. J., 1965. The ecology of marine fouling. In:Ecology and the Industrial Society, 5th Symposium of the British Ecological Society, ed. G., Goodman, 99117. Oxford: Blackwell Scientific Publications.Google Scholar
Crisp, D. J. & Meadows, P. S., 1962. The chemical basis of gregariousness in cirripedes. Proceedings of the Royal Society of London, B, 156, 500–20.Google Scholar
Crisp, D. J. & Meadows, P. S., 1963. Absorbed layers: the stimulus to settlement in barnacles. Proceedings of the Royal Society of London, B, 158, 364–88.Google Scholar
Crisp, D. J. & Southward, A. J., 1961. Different types of cirral activity of barnacles. Philosophical Transactions of the Royal Society of London, B, 243, 271308.Google Scholar
Darwin, C, 1854. A monograph of the subclass Cirripedia. 684 pp. London: Ray Society.Google Scholar
Davenport, C. B., 1938. Growth lines in fossil Pectens as indicators of past climates. Journal of Paleontology, 12, 514–15.Google Scholar
Evans, J. W., 1972. Tidal growth increments in the cockle Clinocardium nuttalli. Science, New York, 176 (4033), 416–17.CrossRefGoogle ScholarPubMed
Foster, B. A., 1971a. Desiccation as a factor in the zonation of barnacles. Marine Biology, 8, 1229.CrossRefGoogle Scholar
Foster, B. A., 1971b. On the determinants of the upper limit of intertidal distribution of barnacle (Crustacea: Cirripedia). Journal of Animal Ecology, 40, 3348.CrossRefGoogle Scholar
Gutmann, W. F., 1960. Funktionelle Morphologic von Balanus balanoides. Abhandlungen Senckenbergischen naturforschenden Gesellschaft, 500, 143.Google Scholar
House, M. R. & Farrow, G. E., 1968. Daily growth banding in the shell of the cockle, Cardium edule. Nature, London, 219, 1384–6.CrossRefGoogle ScholarPubMed
Neville, A. C, 1967. Chitin orientation in the cuticle and its control. Advances in Insect Physiology, 4, 213–86.CrossRefGoogle Scholar
Panella, G. & Macclintock, C, 1968. Biological and environmental rhythms reflected in molluscan shell growth. journal of Paleontology, 42, No. 5 (suppl.), 6480.CrossRefGoogle Scholar
Rhoads, D. C. & Panella, G., 1970. The use of molluscan shell growth patterns in ecology and palaeoecology. Lethaia, 3, 143–61.CrossRefGoogle Scholar
Runcorn, S. K., 1964. Changes in the earth's moment of inertia. Nature, London, 204, 823–5.CrossRefGoogle Scholar
Scudamore, H. H., 1947. The influence of the sinus glands upon molting and associated changes in the crayfish. Physiological Zoology, 20, 187208.CrossRefGoogle ScholarPubMed
Stubbs, P., 1966. Coral time keepers of the slowing earth. New Scientist, 29, 828–9.Google Scholar
Wells, J. W., 1963. Coral growth and geochronometry. Nature, London, 197, 948–50.CrossRefGoogle Scholar
Wilbur, K., 1972. Shell formation in mollusks. In:Chemical Zoology, eds M., Florkin and Scheer, B. T.. Vol. VII. Mollusca, 103–45. London and New York: Academic Press.Google Scholar