Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T06:24:15.809Z Has data issue: false hasContentIssue false

Abundance and catchability estimates of the Atlantic blue crab Callinectes sapidus based on mark-recapture data from the northern Yucatan Peninsula

Published online by Cambridge University Press:  17 April 2017

H. Villegas-Hernández
Affiliation:
Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5, C.P: 97315, Mérida, Yucatán, México
G.R. Poot-López*
Affiliation:
Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5, C.P: 97315, Mérida, Yucatán, México
J.A. López-Rocha
Affiliation:
Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias de la UNAM, Yucatán, Sisal, Puerto de Abrigo, México
C. González-Salas
Affiliation:
Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5, C.P: 97315, Mérida, Yucatán, México
S. Guillen-Hernández
Affiliation:
Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5, C.P: 97315, Mérida, Yucatán, México
*
Correspondence should be addressed to: G.R. Poot-López, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5, C.P: 97315, Mérida, Yucatán, México email: [email protected]

Abstract

A short-term Jolly–Seber mark-recapture model experiment is described. This experiment was aimed at estimating the rate of catch per unit effort (CPUE) and the catchability coefficient (q) of the Atlantic blue crab (Callinectes sapidus) in the fishing port of Sisal, Yucatan, Mexico. To estimate the local population size, 52 traps were deployed along four transects located in a coastal capture area of 3600 m−2. The CPUE and q were compared between the daily mark-recapture Jolly–Seber experiment and the bi-monthly (carried out every 2 months) samplings. The average abundance was estimated at 3475 individuals. All three suggested scenarios, applied to estimate densities, gave similar estimates, i.e. 0.0386, 0.0350, 0.0365 crabs m−2 for the first (Previously Cited Attraction Radius), second (CPUE per transect) and third (Catchability-Density Relationship), respectively. Based on the latter scenario, densities ranged from 27,900 (annual average) to 36,500 (Spring) crabs km−2. The average CPUE of the daily mark-recapture experiment was estimated at 1.96 crabs trap−1, whereas the average bi-monthly CPUE was estimated at 1.13 crabs trap−1. The q (per trap) was estimated at 0.0186 for the daily mark-recapture experiment and at 0.0247 for the bi-monthly sampling. Both catchability and CPUE increased in individuals whose size ranged between 110 and 170 mm CW. However, no significant difference (ANCOVAs) was found between the daily and bi-monthly samplings neither in CPUE nor in catchability. The use of both mark-recapture data and the Jolly–Seber model proved to be a fast and reliable method for estimating the abundance and catchability of Atlantic blue crab.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aedo, G. and Arancibia, H. (2003) Estimating attraction areas and effective fishing areas for Chilean lemon crab (Cancer porteri) using traps. Fisheries Research 60, 267272.Google Scholar
Ahumada, M. and Arana, P. (2009) Pesca artesanal de cangrejo dorado (Chaceon chilensis) en el archipiélago de Juan Fernández, Chile. Latin American Journal of Aquatic Research 37, 285296.Google Scholar
Arena, G., Barea, L. and Defeo, O. (1994) Theoretical evaluation of trap capture for stock assessment. Fisheries Research 60, 349362.Google Scholar
Arreguín-Sánchez, F. (1996) Catchability: assessment a key parameter for fish stock. Reviews in Fish Biology and Fisheries 6, 221242.Google Scholar
Arreguín-Sánchez, F. and Pitcher, T.J. (1999) Catchability estimates accounting for several sources of variation: application to the red grouper fishery of the Campeche Bank, México. Fisheries Bulletin 97, 746757.Google Scholar
Bell, M.C., Eaton, D.R., Bannister, R.C.A. and Addison, J.T. (2003) A mark-recapture approach to estimating population density from continuous trapping data: Application to edible crabs, Cancer pagurus, on the east coast of England. Fisheries Research 65, 361378.Google Scholar
Boschi, E.E. (1997) Las pesquerías de crustáceos decápodos en el litoral de la república Argentina. Investigaciones Marinas 25, 1940.Google Scholar
Caswell, H. (1988) Approaching size and age in matrix population models. In Ebenman, E. and Persson, L. (eds) Size-structured populations. Berlin: Springer-Verlag, pp. 85105.Google Scholar
Celis-Sánchez, J.A., Estrella-Canto, A. de J., Poot-López, G.R., González-Salas, C. and López-Rocha, J.A. (2014) Abundancia estacional de crustáceos asociados a la captura artesanal de jaiba azul (Callinectes sapidus) en Sisal, Yucatán, México. Revista Ciencias Marinas y Costeras 6, 7589.Google Scholar
Chávez, J.E. and Pérez, E.P.E. (2009) Análisis de la variación espacio-temporal de la capturabilidad de la flota artesanal de caleta peñuelas que captura Mesodesma donacium en bahía de Coquimbo, Chile. Interciencia 34, 730735.Google Scholar
CONAPESCA (2014) Consulta especifica por especie: registro y estadística pesquera y acuícola. http://www.conapesca.sagarpa.gob.mx/wb/cona/consulta_especifica_por_produccion (accessed 14 July 2014).Google Scholar
Defeo, O., Andrade-Hernández, M., Pérez-Castañeda, R. and Cabrera-Pérez, J.L. (2005) Pautas para el manejo de la pesquería de jaiba y camarón en un área natural protegida: el caso de la ría Celestún, Yucatán-Campeche. México: CINVESTAV-PRONATURA.Google Scholar
du Preez, B.D., Loveridge, A.J. and Macdonald, D.W. (2014) To bait or not to bait: aa comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biological Conservation 176, 153161.Google Scholar
Eggers, D.M., Rickard, N.A., Chapman, D.G. and Whitney, R.R. (1982) A methodology for estimating area fished for baited hooks and traps along a ground line. Canadian Journal of Fisheries and Aquatic Sciences 39, 448453.Google Scholar
FAO (2008) The state of world fisheries and aquaculture. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
Fitz, H.C. and Wiegert, R.G. (1992) Local population dynamics of estuarine blue crabs: abundance, recruitment and loss. Marine Ecology Progress Series 87, 2340.Google Scholar
Frusher, S.D. and Hoening, J.M. (2001) Estimating natural and fishing mortality and tag reporting rate of southern rock lobster (Jasus edwardsii) from a multiyear tagging model. Canadian Journal of Fisheries and Aquatic Sciences 58, 24902501.Google Scholar
Gedamke, T., DuPaul, W.D. and Hoening, J.M. (2004) A spatially explicit open-ocean DeLury analysis to estimate gear efficiency in the dredge fishery for sea scallop Placopecten magellanicus. North American Journal of Fisheries Management 24, 335351.Google Scholar
Herrera-Silveira, J.A. (1994) Spatial heterogeneity and seasonal patterns in a tropical coastal lagoon. Journal of Coastal Research 10, 738746.Google Scholar
Hightower, J.E. and Gilbert, R.J. (1984) Using the Jolly–Seber model to estimate population size, mortality, and recruitment for a reservoir fish population. Transactions of the American Fisheries Society 113, 633641.Google Scholar
Jolly, G.M. (1965) Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52, 225247.Google Scholar
Krebs, C.J. (1999) Ecological methodology. Menlo Park, CA: Addison-Wesley Longman.Google Scholar
Lipcius, R.N. and Stockhausen, W.T. (2002) Concurrent decline of the spawning stock, recruitment, larval abundance, and size of the blue crab Callinectes sapidus in Chesapeake Bay. Marine Ecology Progress Series 226, 4561.Google Scholar
Lovewell, S.R., Howard, A.E. and Bennett, D.B. (1988) The effectiveness of parlour pots for catching lobsters (Homarus gammarus L.) and crabs (Cancer pagurus L.). ICES Journal of Marine Science 44, 247252.Google Scholar
Martínez-Aguilar, S., Morales-Bojórquez, E., Arreguín-Sánchez, F. and De Anda-Montañez, J.A. (1999) Catchability: programa computarizado para estimar el coeficiente de capturabilidad en función de la longitud. Baja California Sur, México: La Paz.Google Scholar
McElman, J.F. and Elner, R.W. (1982) Red crab (Geryon quinquedens) trap survey along the edge of the Scotian Shelf, September 1980.Google Scholar
Mexicano-Cíntora, C.G., Leonce, V.C.O., Salas, S. and Vega-Cendejas, M.E. (2007) Recursos pesqueros de Yucatán: Fichas técnicas y referencias bibliográficas. Unidad Mérida: Centro de Investigación y Estudios Avanzados del I.P.N.Google Scholar
Miller, R.J. (1975) Density of the commercial spider crab Chionoecetes opilio and calibration of effective area fished per trap using bottom photography. Journal of the Fisheries Research Board of Canada 32, 761768.Google Scholar
Miller, R.J. (1990) Effectiveness of crab and lobster traps. Canadian Journal of Fisheries and Aquatic Sciences 47, 12281251.Google Scholar
Morales-Bojórquez, E. and Nevárez-Martínez, M.O. (2002) Estimación estocástica de la capturabilidad y el reclutamiento del calamar gigante Dosidicus gigas (Dorbigny, 1835) del Golfo de California, México. Ciencias Marinas 28, 193204.Google Scholar
Muñoz, A.C., Pardo, M.L., Henríquez, A.L. and Palma, T.A. (2006) Variaciones temporales en la composición y abundancia de cuatro especies de Cancer (Decapoda: Brachyura: Cancridae) capturadas con trampas en bahía San Vicente, Concepción (Chile central). Investigaciones Marinas 34, 921.Google Scholar
Ortiz-León, H., de Jesús-Navarrete, A. and Sosa-Cordero, E. (2007) Distribución espacial y temporal del cangrejo Callinectes sapidus (Decapoda: Portunidae) en la bahía de Chetumal, Quintana Roo, México. Revista de Biología Tropical 55, 235245.Google Scholar
Perry, H. and Larsen, K. (2004) A picture guide to shelf invertebrates from the Northern Gulf of Mexico. www.itis.usda.gov.Google Scholar
Perry, R.I., Walters, C.J. and Boutillier, J.A. (1999) A framework for providing scientific advice for the management of new and developing invertebrate fisheries. Reviews in Fish Biology and Fisheries 9, 125150.Google Scholar
Pollock, K.H., Nichols, J.D., Brownie, C. and Hines, J.E. (1990) Statistical inference for capture-recapture experiments. Wildlife Monographs 107, 197.Google Scholar
Priede, I. and Merrett, N. (1996) Estimation of abundance of abyssal demersal fishes; a comparison of data from trawls and baited cameras. Journal of Fish Biology 49, 207216.Google Scholar
Rocha-Ramírez, A., Cházaro-Olvera, S. and Mueller-Meier, P.M. (1992) Ecología del género Callinectes (Brachyura: Portunidae) en seis cuerpos de agua costeros del estado de Veracruz, México. Anales del Instituto de Ciencias del Mar y Limnología 19, 3341.Google Scholar
Rosas-Correa, C.O. and de Jesús-Navarrete, A.J. (2008) Parámetros poblacionales de la jaiba azul Callinectes sapidus (Rathbun, 1896) en la bahía de Chetumal, Quintana Roo, México. Revista de Biología Marina y Oceanografía 43, 247253.Google Scholar
Shepherd, J.G. (1987) A weakly parametric method for estimating growth parameters from length composition data. In Pauly D. and Morgan G.P. (eds) Length based methods in fisheries research. ICLARM Conference Proceedings 14, pp. 113119.Google Scholar
Smith, M.T. and Addison, J.T. (2003) Methods for stock assessment of crustacean fisheries. Fisheries Research 65, 231256.Google Scholar
Sokal, R.R. and Rohlf, F.J. (1995) Biometry. New York, NY: W.H. Freeman and Company, p. 887.Google Scholar
Tenningen, M., Slotte, A. and Skagen, D. (2011) Abundance estimation of Northeast Atlantic mackerel based on tag recapture data – a useful tool for stock assessment? Fisheries Research 107, 6874.Google Scholar
Tremblay, M.J., Eagles, M.D. and Black, G.A.P. (1998) Movements of the lobster, Homarus americanus, off the northeastern Cape Breton Island, with notes on lobster catchability. Canadian technical report of fisheries and aquatic sciences. http://publications.gc.ca/pub?id=9.614491&sl=0Google Scholar
Uscudun, M.G. (2014) Estrategia reproductiva del cangrejo Sirí Callinectes sapidus Rathbun 1896 (Decapoda, Brachyura, Portunidae), en la laguna de Rocha, Uruguay. Tesis de Maestria. Universidad de la República de Uruguay.Google Scholar
Vega-Cendejas, M.E. (2004) Ictiofauna de la Reserva de la Biosfera Celestún, Yucatán: una contribución al conocimiento de su biodiversidad. Anales del Instituto de Biología (U.N.A.M. Serie Zoología) 75, 193206.Google Scholar
Velazquez de la Cruz, G., Ramírez de León, J.A., Pérez Castañeda, R., Reyes López, M.Á. and Martínez Vázquez, A.V. (2012) Aprovechamiento de la jaiba azul (Callinectes sapidus) en la Laguna Madre de Tamaulipas. Mexico, D.F.: Plaza y Valdes Editores.Google Scholar
Villasmil, L. and Mendoza, J. (2001) Pesquería del cangrejo Callinectes sapidus (Decapoda: Brachyura) en el lago de Maracaibo, Venezuela. Interciencia 26, 301306.Google Scholar
Zar, J.H. (1996) Biostatistical analysis. Upper Saddle River, NJ: Prentice-Hall, Inc.Google Scholar