Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T19:12:49.272Z Has data issue: false hasContentIssue false

ON THE RELATION BETWEEN INDEX AND MULTIPLICITY

Published online by Cambridge University Press:  01 June 1998

ANNA CIMA
Affiliation:
Departament de Matemàtiques, Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
ARMENGOL GASULL
Affiliation:
Departament de Matemàtiques, Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
JOAN TORREGROSA
Affiliation:
Departament de Matemàtiques, Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Get access

Abstract

This paper is mainly devoted to the study of the index of a map at a zero, and the index of a polynomial map over ℝn. For semi-quasi-homogeneous maps we prove that the index at a zero coincides with the index at this zero of its quasi-homogeneous part. For a class of polynomial maps with finite zero set we provide a method which makes easier the computation of its index over ℝn. Finally we relate the index and the multiplicity.

Type
Notes and Papers
Copyright
The London Mathematical Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)