Published online by Cambridge University Press: 01 April 2000
It is proved that the dual of a Banach space with the Mazur intersection property is almost weak* Asplund. Analogously, the predual of a dual space with the weak* Mazur intersection property is almost Asplund. Through the use of these arguments, it is found that, in particular, almost all (in the Baire sense) equivalent norms on [lscr ]1(Γ) and [lscr ]∞(Γ) are Fréchet differentiable on a dense Gδ subset. Necessary conditions for Mazur intersection properties in terms of convex sets satisfying a Krein–Milman type condition are also discussed. It is also shown that, if a Banach space has the Mazur intersection property, then every subspace of countable codimension can be equivalently renormed to satisfy this property.