Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Lunardon, G.
and
Polverino, O.
2000.
Blocking Sets of Size qt+qt−1+1.
Journal of Combinatorial Theory, Series A,
Vol. 90,
Issue. 1,
p.
148.
Ball, Simeon
Blokhuis, Aart
and
Lavrauw, Michel
2000.
Linear (q+1)-fold Blocking Sets in PG(2, q4).
Finite Fields and Their Applications,
Vol. 6,
Issue. 4,
p.
294.
Hirschfeld, J. W. P.
and
Storme, L.
2001.
Finite Geometries.
Vol. 3,
Issue. ,
p.
201.
Govaerts, P.
Storme, L.
and
Van Maldeghem, H.
2002.
On a Particular Class of Minihypers and its Applications. III. Applications.
European Journal of Combinatorics,
Vol. 23,
Issue. 6,
p.
659.
Polverino, O
and
Storme, L
2002.
Small Minimal Blocking Sets inPG(2, q3).
European Journal of Combinatorics,
Vol. 23,
Issue. 1,
p.
83.
Govaerts, P.
and
Storme, L.
2002.
On a Particular Class of Minihypers and Its Applications.
Journal of Combinatorial Theory, Series A,
Vol. 97,
Issue. 2,
p.
369.
Brown, M.R.
De Beule, J.
and
Storme, L.
2003.
Maximal partial spreads of T2(O) and T3(O).
European Journal of Combinatorics,
Vol. 24,
Issue. 1,
p.
73.
De Beule, J.
Hoogewijs, A.
and
Storme, L.
2004.
On the size of minimal blocking sets of Q(4;q), forq= 5,7.
ACM SIGSAM Bulletin,
Vol. 38,
Issue. 3,
p.
67.
Govaerts, Patrick
and
Storme, Leo
2004.
On Cameron--Liebler line classes.
advg,
Vol. 4,
Issue. 3,
p.
279.
Eisfeld, J.
Storme, L.
and
Sziklai, P.
2005.
On the Spectrum of the Sizes of Maximal Partial Line Spreads in PG(2n,q), n ≥ 3.
Designs, Codes and Cryptography,
Vol. 36,
Issue. 1,
p.
101.
Blokhuis, A
Lovász, L
Storme, L
and
Szőnyi, T
2007.
On multiple blocking sets in Galois planes.
advg,
Vol. 7,
Issue. 1,
p.
39.
De Beule, J.
Metsch, K.
and
Storme, L.
2008.
Characterization results on arbitrary non-weighted minihypers and on linear codes meeting the Griesmer bound.
Designs, Codes and Cryptography,
Vol. 49,
Issue. 1-3,
p.
187.
Bacsó, Gábor
and
Tuza, Zsolt
2008.
Upper chromatic number of finite projective planes.
Journal of Combinatorial Designs,
Vol. 16,
Issue. 3,
p.
221.
Sziklai, Peter
2008.
On small blocking sets and their linearity.
Journal of Combinatorial Theory, Series A,
Vol. 115,
Issue. 7,
p.
1167.
Schillewaert, J.
and
Thas, J. A.
2009.
Characterizations of Hermitian varieties by intersection numbers.
Designs, Codes and Cryptography,
Vol. 50,
Issue. 1,
p.
41.
Ball, Simeon
and
Fancsali, Szabolcs L.
2009.
Multiple blocking sets in finite projective spaces and improvements to the Griesmer bound for linear codes.
Designs, Codes and Cryptography,
Vol. 53,
Issue. 2,
p.
119.
Pepe, V.
and
Storme, L.
2012.
Buildings, Finite Geometries and Groups.
Vol. 10,
Issue. ,
p.
305.
De Beule, J.
Hallez, A.
and
Storme, L.
2012.
A characterisation result on a particular class of non-weighted minihypers.
Designs, Codes and Cryptography,
Vol. 63,
Issue. 2,
p.
159.
2013.
Handbook of Finite Fields.
p.
777.
Bacsó, Gábor
Héger, Tamás
and
Szőnyi, Tamás
2013.
The 2‐Blocking Number and the Upper Chromatic Number of PG(2,q).
Journal of Combinatorial Designs,
Vol. 21,
Issue. 12,
p.
585.