Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Horie, Kuniaki
2005.
The ideal class group of the basic $\mathbf Z_p$-extension over an imaginary quadratic field.
Tohoku Mathematical Journal,
Vol. 57,
Issue. 3,
HORIE, Kuniaki
2005.
Triviality in ideal class groups of Iwasawa-theoretical abelian number fields.
Journal of the Mathematical Society of Japan,
Vol. 57,
Issue. 3,
Horie, Kuniaki
2005.
Primary components of the ideal class group of the $\mathbf{Z}_p$-extension over $\mathbf{Q}$ for typical inert primes.
Proceedings of the Japan Academy, Series A, Mathematical Sciences,
Vol. 81,
Issue. 3,
Horie, Kuniaki
2007.
Certain primary components of the ideal class group of the $\boldsymbol{Z}_p$-extension over the rationals.
Tohoku Mathematical Journal,
Vol. 59,
Issue. 2,
HORIE, Kuniaki
2007.
Primary components of the ideal class group of an Iwasawa-theoretical abelian number field.
Journal of the Mathematical Society of Japan,
Vol. 59,
Issue. 3,
Horie, Kuniaki
and
Horie, Mitsuko
2009.
The ideal class group of the Z23-extension over the rational field.
Proceedings of the Japan Academy, Series A, Mathematical Sciences,
Vol. 85,
Issue. 10,
Horie, Kuniaki
and
Horie, Mitsuko
2009.
The ideal class group of the $\boldsymbol{Z}_p$-extension over the rationals.
Tohoku Mathematical Journal,
Vol. 61,
Issue. 4,
Horie, Kuniaki
and
Horie, Mitsuko
2010.
The narrow class groups of the ℤ17- and ℤ19-extensions over the rational field.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg,
Vol. 80,
Issue. 1,
p.
47.
Ichimura, Humio
and
Nakajima, Shoichi
2010.
On the 2-part of the ideal class group of the cyclotomic Z p -extension over the rationals.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg,
Vol. 80,
Issue. 2,
p.
175.
FUKUDA, TAKASHI
and
KOMATSU, KEIICHI
2011.
WEBER'S CLASS NUMBER PROBLEM IN THE CYCLOTOMIC ℤ2-EXTENSION OF ℚ, III.
International Journal of Number Theory,
Vol. 07,
Issue. 06,
p.
1627.
Ichimura, Humio
and
Nakajima, Shoichi
2012.
A note on the relative class number of the cyclotomic $\mathbf{Z}_{p}$-extension of $\mathbf{Q}(\sqrt{-p})$.
Proceedings of the Japan Academy, Series A, Mathematical Sciences,
Vol. 88,
Issue. 1,
ICHIMURA, Humio
and
NAKAJIMA, Shoichi
2012.
On the 2-part of the class numbers of cyclotomic fields of prime power conductors.
Journal of the Mathematical Society of Japan,
Vol. 64,
Issue. 1,
Ichimura, Humio
2013.
A note on the relative class number of the cyclotomic $\mathbf{Z}_{p}$-extension of $\mathbf{Q}(\sqrt{-p})$, II.
Proceedings of the Japan Academy, Series A, Mathematical Sciences,
Vol. 89,
Issue. 2,
Morisawa, Takayuki
2013.
On the ℓ -part of theZp1×⋯×Zps-extension ofQ.
Journal of Number Theory,
Vol. 133,
Issue. 6,
p.
1814.
ICHIMURA, Humio
2013.
NOTE ON THE RELATIVE CLASS NUMBER OF THE 7n th CYCLOTOMIC FIELD.
Kyushu Journal of Mathematics,
Vol. 67,
Issue. 1,
p.
155.
Morisawa, Takayuki
and
Okazaki, Ryotaro
2013.
Mahler measure and Weber's class number problem in the cyclotomic $\boldsymbol{Z}_p$-extension of $\boldsymbol{Q}$ for odd prime number $p$.
Tohoku Mathematical Journal,
Vol. 65,
Issue. 2,
Fukuda, Takashi
Komatsu, Keiichi
and
Morisawa, Takayuki
2014.
Iwasawa Theory 2012.
Vol. 7,
Issue. ,
p.
221.
LAMPLUGH, JACK
2014.
Triviality of the ℓ-class groups in -extensions of for split primes p ≡ 1 modulo 4.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 157,
Issue. 1,
p.
169.
Ichimura, Humio
2017.
Note on the class number of the $p$th cyclotomic field, III.
Functiones et Approximatio Commentarii Mathematici,
Vol. 57,
Issue. 1,
Fujima, Shoichi
and
Ichimura, Humio
2018.
Note on the Class Number of the pth Cyclotomic Field, II.
Experimental Mathematics,
Vol. 27,
Issue. 1,
p.
111.