Published online by Cambridge University Press: 30 October 2001
For a prime p, a homology decomposition of the classifying space BG of a finite group G consist of a functor F : D → spaces from a small category into the category of spaces and a map hocolim F → BG from the homotopy colimit to BG that induces an isomorphism in mod-p homology. Associated to a modular representation G → Gl(n; [ ]p), a family of subgroups is constructed that is closed under conjugation, which gives rise to three different homology decompositions, the so-called subgroup, centralizer and normalizer decompositions. For an action of G on an [ ]p-vector space V, this collection consists of all subgroups of G with nontrivial p-Sylow subgroup which fix nontrivial (proper) subspaces of V pointwise. These decomposition formulas connect the modular representation theory of G with the homotopy theory of BG.