Published online by Cambridge University Press: 24 April 2006
We show that for every natural number m a finitely generated metabelian group G embeds in a quotient of a metabelian group of type $\textit{FP}_m$. Furthermore, if $m \leq 4$, the group G can be embedded in a metabelian group of type $\textit{FP}_m$. For L a finitely generated metabelian Lie algebra over a field K and a natural number m we show that, provided the characteristic p of K is 0 or $p > m$, then L can be embedded in a metabelian Lie algebra of type $\textit{FP}_m$. This result is the best possible as for $0 < p\leq m$ every metabelian Lie algebra over K of type $\textit{FP}_m$ is finite dimensional as a vector space.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.