Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T07:45:03.881Z Has data issue: false hasContentIssue false

THE CHARACTERIZATION OF THE REGULARITY OF THE JACOBIAN DETERMINANT IN THE FRAMEWORK OF BESSEL POTENTIAL SPACES ON DOMAINS

Published online by Cambridge University Press:  01 October 1999

WINFRIED SICKEL
Affiliation:
Mathematisches Institut, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 1–4, 07743 Jena, Germany
ABDELLAH YOUSSFI
Affiliation:
Equipe d'Analyse et de Mathématiques Appliquées, Université de Marne-la-Vallée, 5 Boulevard Descartes, Cité Descartes Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France
Get access

Abstract

Let 2 [les ] m [les ] n. The paper gives necessary and sufficient conditions on the parameters s1, s2, …, sm, p1, p2, …, pm such that the Jacobian determinant extends to a bounded operator from [Hscr ]s1p1 × [Hscr ]s2p2 × … × [Hscr ]smpm into [Sscr ]′. Here all spaces are defined on ℝn or on domains Ω⊂ℝn. In almost all cases the regularity of the Jacobian determinant is calculated exactly.

Type
Notes and Papers
Copyright
The London Mathematical Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)