Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T06:03:22.586Z Has data issue: false hasContentIssue false

ASYMPTOTICS FOR FRACTIONAL NONLINEAR HEAT EQUATIONS

Published online by Cambridge University Press:  08 December 2005

NAKAO HAYASHI
Affiliation:
Department of Mathematics, Graduate School of Science, Osaka University, Osaka, Toyonaka 560-0043, [email protected]
ELENA I. KAIKINA
Affiliation:
Departamento de Ciencias Básicas, Instituto Tecnológico de Morelia, CP 58120, Morelia, Michoacán, Mexico
PAVEL I. NAUMKIN
Affiliation:
Instituto de Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoacán, [email protected]
Get access

Abstract

The Cauchy problem is studied for the nonlinear equations with fractional power of the negative Laplacian \[ \left\{ \begin{array}{@{}r@{\,}c@{\,}l@{\qquad}l} u_{t}+( -\Delta ) ^{{\alpha}/{2}}u+u^{1+\sigma } &=&0, & x\in {\mathbf{R}}^{n},\text{ }t>0, \\[4pt] u( 0,x) &=& u_{0} ( x), &x\in {\mathbf{R}}^{n}, \end{array} \right. \label{A} \] where $\alpha \in ( 0,2)$, with critical $\sigma ={\alpha }/{ n}$ and sub-critical $\sigma \in ( 0,{\alpha }/{n}) $ powers of the nonlinearity. Let $u_{0}\,{\in}\, \mathbf{L}^{1,a}\cap \mathbf{L}^{\infty }\cap \mathbf{C}, $$u_{0}( x) \,{\geq}\, 0$ in $\mathbf{R}^{n},$$\theta \,{=}\,\int_{ \mathbf{R}^{n}}u_{0}( x) \,dx\,{>}\,0.$ The case of not small initial data is of interest. It is proved that the Cauchy problem has a unique global solution $u \in \mathbf{C}( [0,\infty); \mathbf{L}^{\infty }\cap \mathbf{L}^{1,a}\cap \mathbf{C})$ and the large time asymptotics are obtained.

Type
Notes and Papers
Copyright
The London Mathematical Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)