Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T01:33:09.481Z Has data issue: false hasContentIssue false

NECESSARY AND SUFFICIENT CONDITIONS FOR EXISTENCE AND UNIQUENESS OF SOLUTIONS OF SECOND-ORDER AUTONOMOUS DIFFERENTIAL EQUATIONS

Published online by Cambridge University Press:  06 April 2005

RODRIGO LÓPEZ POUSO
Affiliation:
Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, [email protected]
Get access

Abstract

The main result ensures that the scalar problem $x''\,{=}\,f(x)$, $x(0)\,{=}\,x_0$, $x'(0)\,{=}\,x_1,$ has a nonconstant locally $W^{2,1}$ solution if and only if there exists a nontrivial interval $J$ such that $x_0 \in J$, $f \in L^1_{\rm loc}(J)$, $x_1^2+2\int_{x_0}^{y}{f(s)\,ds} > 0$ for almost all $y \in J$ and \[\frac{\max\{1,|f|\}}{ \sqrt{x_1^2+2\int_{x_0}^{\cdot}{f(s)\,ds}}} \in L^1_{\rm loc}(J).\] Necessary and sufficient conditions for local and global uniqueness and for existence of periodic solutions are also established.

Keywords

Type
Notes and Papers
Copyright
The London Mathematical Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was partially supported by the Ministerio de Ciencia y Tecnología, Spain/FEDER, project BFM2001-3884-C02-01, and by the Xunta de Galicia, Spain/FEDER, project PGIDIT02PXIC20703PN.