Article contents
THE KIRWAN MAP FOR SINGULAR SYMPLECTIC QUOTIENTS
Published online by Cambridge University Press: 22 February 2006
Abstract
Let M be a Hamiltonian K-space with proper moment map $\mu$. The symplectic quotient $X=\mu^{-1}(0)/K$ is a singular stratified space with a symplectic structure on the strata. In this paper we generalise the Kirwan map, which maps the K equivariant cohomology of $\mu^{-1}(0)$ to the middle perversity intersection cohomology of X, to this symplectic setting.
The key technical results which allow us to do this are Meinrenken's and Sjamaar's partial desingularisation of singular symplectic quotients and a decomposition theorem, proved in Section 2 of this paper, exhibiting the intersection cohomology of a ‘symplectic blowup’ of the singular quotient X along a maximal depth stratum as a direct sum of terms including the intersection cohomology of X.
- Type
- Notes and Papers
- Information
- Copyright
- The London Mathematical Society 2006
- 1
- Cited by