Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T17:06:31.289Z Has data issue: false hasContentIssue false

INVARIANT CURVES BY VECTOR FIELDS ON ALGEBRAIC VARIETIES

Published online by Cambridge University Press:  30 October 2000

A. CAMPILLO
Affiliation:
Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s.n., 47005 Valladolid, Spain
M. M. CARNICER
Affiliation:
Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s.n., 47005 Valladolid, Spain
J. GARCÍA DE LA FUENTE
Affiliation:
Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s.n., 47005 Valladolid, Spain
Get access

Abstract

If C is a reduced curve which is invariant by a one-dimensional foliation [Fscr ] of degree d[Fscr ] on the projective space then it is shown that d[Fscr ]−1+a is a bound for the quotient of the two coefficients of the Hilbert–Samuel polynomial for C, where a is an integer obtained from a concrete problem of imposing singularities to projective hypersurfaces, and so a bound is obtained for the degree of C when it is a complete intersection. Concrete values of a can be derived for several interesting applications. The results are presented in the form of intersection-theoretical inequalities for one-dimensional foliations on arbitrary smooth algebraic varieties.

Type
Research Article
Copyright
The London Mathematical Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)