Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T21:49:43.277Z Has data issue: false hasContentIssue false

CONTRACTIONS ET HYPERDISTRIBUTIONS À SPECTRE DE CARLESON

Published online by Cambridge University Press:  01 August 1998

K. KELLAY
Affiliation:
UFR de Mathématiques et Informatique, Université de Bordeaux, 351 cours de la Libération, 33405 Talence Cedex, France. E-mail: [email protected] Current address: Département de Mathématiques et de Statistique, Université Laval, Québec, Canada G1K 7P4. E-mail: [email protected]
Get access

Abstract

Let ω=(ωn)n[ges ]1 be a log concave sequence such that lim infn→+∞ ωn/nc>0 for some c>0 and ((log ωn)/nα)n[ges ]1 is nonincreasing for some α<1/2. We show that, if T is a contraction on the Hilbert space with spectrum a Carleson set, and if ∥Tn∥=On) as n tends to +∞ with [sum ]n[ges ]11/(n log ωn)=+∞, then T is unitary. On the other hand, if [sum ]n[ges ]11/(n log ωn)<+∞, then there exists a (non-unitary) contraction T on the Hilbert space such that the spectrum of T is a Carleson set, ∥Tn∥=On) as n tends to +∞, and lim supn→+∞Tn∥=+∞.

Type
Notes and Papers
Copyright
The London Mathematical Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)