Article contents
COMPLETE SCALE OF ISOMORPHISMS FOR ELLIPTIC PSEUDODIFFERENTIAL BOUNDARY-VALUE PROBLEMS
Published online by Cambridge University Press: 30 October 2001
Abstract
The aim of the paper is to establish a complete scale of isomorphisms for elliptic pseudodifferential boundary value problems generated by the operators of the Boutet de Monvel algebra. The result is an extension of the corresponding known results on elliptic differential boundary value problems. Because for any elliptic pseudodifferential boundary value problem there exists a parametrix belonging to the Boutet de Monvel algebra, the proof presented is much shorter than the known proof for differential problems. Systems that are elliptic in the sense of Douglis and Nirenberg are also considered.
- Type
- Research Article
- Information
- Copyright
- The London Mathematical Society 2001
- 6
- Cited by