Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T03:33:48.713Z Has data issue: false hasContentIssue false

Why cognitive performance in ADHD may not reveal true potential: Findings from a large population-based sample

Published online by Cambridge University Press:  01 July 2009

JONNA KUNTSI*
Affiliation:
MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
ALEXIS C. WOOD
Affiliation:
MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
JAAP VAN DER MEERE
Affiliation:
Department of Developmental and Experimental Clinical Psychology, University of Groningen, Groningen, The Netherlands
PHILIP ASHERSON
Affiliation:
MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
*
*Correspondence and reprint requests to: Jonna Kuntsi, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, De Crespigny Park (Box P080), London SE5 8AF, UK. E-mail: [email protected]

Abstract

Focusing on symptoms of attention deficit hyperactivity disorder (ADHD) in a sample obtained from the general population, we aimed to investigate the effects of incentives and event rate on reaction time (RT) performance and response inhibition. We assessed 1156 children, at a mean age of 8 years, on their performance on an inhibition task and a RT task under different experimental conditions that manipulated event rate and incentives. Children with high ADHD (ADHD-H) symptoms showed cognitive performance deficits only under some of the experimental conditions compared to a control group. The fast-incentive condition of the RT task succeeded in normalizing the RT variability, as well as the slow overall speed, in the ADHD-H group. Analyses of ADHD symptom scores as a quantitative trait in the total sample were overall consistent with these findings. The findings suggest that at least some cognitive performance deficits in children with high ADHD symptoms do not reflect stable cognitive deficits. The degree to which cognitive impairments in ADHD can be modulated by energetic or motivational factors has important implications for clinical and educational interventions. (JINS, 2009, 15, 570–579.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alderson, R.M., Rapport, M.D., & Kofler, M.J. (2007). Attention-deficit/hyperactivity disorder and behavioral inhibition: A meta-analytic review of the stop-signal paradigm. Journal of Abnormal Child Psychology, 35, 745758.CrossRefGoogle ScholarPubMed
Andreou, P., Neale, B.M., Chen, W., Christiansen, H., Gabriels, I., Heise, A., Meidad, S., Muller, U.C., Uebel, H., Banaschewski, T., Manor, I., Oades, R., Roeyers, H., Rothenberger, A, Sham, P., Steinhausen, H.C., Asherson, P., & Kuntsi, J. (2007). Reaction time performance in ADHD: Improvement under fast-incentive condition and familial effects. Psychological Medicine, 37, 17031715.CrossRefGoogle ScholarPubMed
Banaschewski, T., Brandeis, D., Heinrich, H., Albrecht, B., Brunner, E., & Rothenberger, A. (2004). Questioning inhibitory control as the specific deficit of ADHD—Evidence from brain electrical activity. Journal of Neural Transmission, 111, 841864.CrossRefGoogle ScholarPubMed
Bellgrove, M.A., Hawi, Z., Kirley, A., Gill, M., & Robertson, I.H. (2005). Dissecting the attention deficit hyperactivity disorder (ADHD) phenotype: Sustained attention, response variability and spatial attentional asymmetries in relation to dopamine transporter (DAT1) genotype. Neuropsychologia, 43, 18471857.CrossRefGoogle ScholarPubMed
Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., & Golani, I. (2001). Controlling the false discovery rate in behavior genetics research. Behavioural Brain Research, 125, 279284.CrossRefGoogle ScholarPubMed
Berwid, O.G., Curko Kera, E.A., Marks, D.J., Santra, A., Bender, H.A., & Halperin, J.M. (2005). Sustained attention and response inhibition in young children at risk for attention deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 46, 12191229.CrossRefGoogle ScholarPubMed
Borger, N. & van der Meere, J. (2000). Motor control and state regulation in children with ADHD: A cardiac response study. Biological Psychology, 51, 247267.CrossRefGoogle ScholarPubMed
Brandeis, D., van Leeuwen, T.H., Rubia, K., Vitacco, D., Steger, J., Pascual-Marqui, R.D., & Steinhausen, H.C. (1998). Neuroelectric mapping reveals precursor of stop failures in children with attention deficits. Behavioural Brain Research, 94, 111125.CrossRefGoogle ScholarPubMed
Castellanos, F.X., Sonuga-Barke, E.J., Scheres, A., Di Martino, A., Hyde, C., & Walters, J.R. (2005). Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biological Psychiatry, 57, 14161423.CrossRefGoogle ScholarPubMed
Castellanos, F.X. & Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nature Reviews. Neuroscience, 3, 617628.CrossRefGoogle ScholarPubMed
Chen, W., Zhou, K., Sham, P., Franke, B., Kuntsi, J., Campbell, D.Fleischman, K., Knight, J., Andreou, P., Arnold, R., Altink, M., Boer, F., Boholst, M.J., Buschgens, C., Butler, L., Christiansen, H., Fliers, E., Howe-Forbes, R., Gabriëls, I., Heise, A., Korn-Lubetzki, I., Marco, R., Medad, S., Minderaa, R., Müller, U.C., Mulligan, A., Psychogiou, L., Rommelse, N., Sethna, V., Uebel, H., McGuffin, P., Plomin, R., Banaschewski, T., Buitelaar, J., Ebstein, R., Eisenberg, J., Gill, M., Manor, I., Miranda, A., Mulas, F., Oades, R.D., Roeyers, H., Rothenberger, A., Sergeant, J., Sonuga-Barke, E., Steinhausen, H.C., Taylor, E., Thompson, M., Faraone, S.V., & Asherson, P. (2008). DSM-IV combined type ADHD shows familial association with sibling trait scores: A sampling strategy for QTL linkage. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147, 14501460.CrossRefGoogle Scholar
Conners, C.K., Sitarenios, G., Parker, J.D., & Epstein, J.N. (1998a). Revision and restandardization of the Conners Teacher Rating Scale (CTRS-R): Factor structure, reliability, and criterion validity. Journal of Abnormal Child Psychology, 26, 279291.CrossRefGoogle ScholarPubMed
Conners, C.K., Sitarenios, G., Parker, J.D., & Epstein, J.N. (1998b). The revised Conners’ Parent Rating Scale (CPRS-R): Factor structure, reliability, and criterion validity. Journal of Abnormal Child Psychology, 26, 257268.CrossRefGoogle ScholarPubMed
Ford, T., Goodman, R., & Meltzer, H. (2003). The British Child and Adolescent Mental Health Survey 1999: The prevalence of DSM-IV disorders. Journal of American Academy of Child and Adolescent Psychiatry, 42, 12031211.CrossRefGoogle ScholarPubMed
Klein, C., Wendling, K., Huettner, P., Ruder, H., & Peper, M. (2006). Intra-subject variability in attention-deficit hyperactivity disorder. Biological Psychiatry, 60, 10881097.CrossRefGoogle ScholarPubMed
Konrad, K., Gauggel, S., Manz, A., & Scholl, M. (2000). Lack of inhibition: A motivational deficit in children with attention deficit/hyperactivity disorder and children with traumatic brain injury. Child Neuropsycholology, 6, 286296.CrossRefGoogle ScholarPubMed
Kuntsi, J., Andreou, P., Ma, J., Borger, N.A., & van der Meere, J.J. (2005). Testing assumptions for endophenotype studies in ADHD: Reliability and validity of tasks in a general population sample. BMC Psychiatry, 5, 40.CrossRefGoogle Scholar
Kuntsi, J., McLoughlin, G., & Asherson, P. (2006a). Attention deficit hyperactivity disorder. Neuromolecular Medicine, 8, 461484.CrossRefGoogle ScholarPubMed
Kuntsi, J., Oosterlaan, J., & Stevenson, J. (2001). Psychological mechanisms in hyperactivity: I. Response inhibition deficit, working memory impairment, delay aversion, or something else? Journal of Child Psychology and Psychiatry, and Allied Disciplines, 42, 199210.CrossRefGoogle ScholarPubMed
Kuntsi, J., Rogers, H., Swinard, G., Borger, N., van der, M.J., Rijsdijk, F., & Asherson, P. (2006b). Reaction time, inhibition, working memory and ‘delay aversion’ performance: Genetic influences and their interpretation. Psychological Medicine, 36, 16131624.CrossRefGoogle ScholarPubMed
Kuntsi, J. & Stevenson, J. (2001). Psychological mechanisms in hyperactivity: II. The role of genetic factors. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 42, 211219.CrossRefGoogle ScholarPubMed
Leth-Steensen, C., Elbaz, Z.K., & Douglas, V.I. (2000). Mean response times, variability, and skew in the responding of ADHD children: A response time distributional approach. Acta Psychologica, 104, 167190.CrossRefGoogle ScholarPubMed
Lijffijt, M., Kenemans, J.L., Verbaten, M.N., & van, E.H. (2005). A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: Deficient inhibitory motor control? Journal of Abnormal Psychology, 114, 216222.CrossRefGoogle ScholarPubMed
Loo, S.K. & Smalley, S.L. (2008). Preliminary report of familial clustering of EEG measures in ADHD. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147, 107109.CrossRefGoogle Scholar
Luman, M., Oosterlaan, J., & Sergeant, J.A. (2005). The impact of reinforcement contingencies on AD/HD: A review and theoretical appraisal. Clinical Psychology Review, 25, 183213.CrossRefGoogle ScholarPubMed
Lumley, T., Diehr, P., Emerson, S., & Chen, L. (2002). The importance of the normality assumption in large public health data sets. Annual Review of Public Health, 23, 151169.CrossRefGoogle ScholarPubMed
McLoughlin, G., Albrecht, B., Banaschewski, T., Rothenberger, A., Brandeis, D., Asherson, P., & Kuntsi, J. (under review). Developmental Stability of abnormal preparatory states and inhibitory processing in attention deficit hyperactivity disorder: Electrophysiological evidence from an adult sample.Google Scholar
Pliszka, S.R., Liotti, M., & Woldorff, M.G. (2000). Inhibitory control in children with attention-deficit/hyperactivity disorder: Event-related potentials identify the processing component and timing of an impaired right-frontal response-inhibition mechanism. Biological Psychiatry, 48, 238246.CrossRefGoogle ScholarPubMed
Price, T.S., Freeman, B., Craig, I., Petrill, S.A., Ebersole, L., & Plomin, R. (2000). Infant zygosity can be assigned by parental report questionnaire data. Twin Research, 3, 129133.CrossRefGoogle ScholarPubMed
Salamone, J.D., Correa, M., Farrar, A., & Mingote, S.M. (2007). Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology, 191, 461482.CrossRefGoogle ScholarPubMed
Sattler, J.M. (1992). Assessment of children: WISC-III and WPPSI-R supplement. San Diego, CA: Jerome M. Sattler.Google Scholar
Sergeant, J.A. (2005). Modeling attention-deficit/hyperactivity disorder: A critical appraisal of the cognitive-energetic model. Biological Psychiatry, 57, 12481255.CrossRefGoogle ScholarPubMed
Slusarek, M., Velling, S., Bunk, D., & Eggers, C. (2001). Motivational effects on inhibitory control in children with ADHD. Journal of American Academy of Child and Adolescent Psychiatry, 40, 355363.CrossRefGoogle ScholarPubMed
Tabachnick, B.G. & Fidell, L.S. (2007). Using multivariate statistics (5th ed.). Boston, MA: Allyn & Bacon.Google Scholar
Trouton, A., Spinath, F.M., & Plomin, R. (2002). Twins early development study (TEDS): A multivariate, longitudinal genetic investigation of language, cognition and behavior problems in childhood. Twin Research, 5, 444448.CrossRefGoogle ScholarPubMed
van der Meere, J., Stemerdink, N., & Gunning, B. (1995). Effects of presentation rate of stimuli on response inhibition in ADHD children with and without tics. Perceptual and Motor Skills, 81, 259262.CrossRefGoogle ScholarPubMed
van der Meere, J.J. (2002). The role of attention. In Sandberg, S. (Ed.), Hyperactivity disorders of childhood (2nd ed., pp. 162213). Cambridge, UK: Cambridge University Press.Google Scholar
van Leeuwen, T.H., Steinhausen, H.C., Overtoom, C.C., Pascual-Marqui, R.D., van’t, K.B., Rothenberger, A., Sergeant, J.A., & Brandeis, D. (1998). The continuous performance test revisited with neuroelectric mapping: Impaired orienting in children with attention deficits. Behavioural Brain Research, 94, 97110.CrossRefGoogle ScholarPubMed
Wechsler, D. (1991). Wechsler Intelligence Scale for Children (3rd ed.). London, UK: The Psychological Corporation.Google Scholar
Wiersema, R., van der, M.J., Roeyers, H., Van, C.R., & Baeyens, D. (2006). Event rate and event-related potentials in ADHD. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 47, 560567.CrossRefGoogle ScholarPubMed
Willcutt, E.G., Doyle, A.E., Nigg, J.T., Faraone, S.V., & Pennington, B.F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57, 13361346.CrossRefGoogle ScholarPubMed