Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T04:53:14.642Z Has data issue: false hasContentIssue false

Task-dependent changes in brain activation following therapy for nonfluent aphasia: Discussion of two individual cases

Published online by Cambridge University Press:  25 October 2006

LEORA R. CHERNEY
Affiliation:
Center for Aphasia Research, Rehabilitation Institute of Chicago, Chicago, Illinois Northwestern University, Feinberg School of Medicine, Chicago, Illinois
STEVEN L. SMALL
Affiliation:
The University of Chicago, Chicago, Illinois

Abstract

The complex process of cortical reorganization of language-related brain regions during recovery from aphasia and the effects of therapeutic interventions on brain systems are poorly understood. We studied two patients with chronic aphasia and compared their functional neuroanatomical responses to a younger control group on two tasks, an oral-reading task involving overt speech and a “passive” audiovisual story-comprehension task. Following identical therapy, we re-examined behavioral (language) and functional neuroanatomical changes using the same functional magnetic resonance imaging (fMRI) tasks. We hypothesized that better recovery would be associated with brain activation patterns more closely resembling healthy controls, whereas positive responses to language treatment would be associated with increased activity in undamaged left perisylvian areas and/or right-hemisphere areas homologous to the damaged regions. For the participant with a frontal lesion who was most responsive to therapy, brain activation increased in the right hemisphere during oral-reading, but decreased bilaterally in most regions on story-comprehension. The other participant with a temporal–parietal lesion showed decreased activation, particularly in the right hemisphere, during oral-reading but increased activation bilaterally on story-comprehension. Results highlight individual variability following language therapy, with brain activation changes depending on lesion site and size, language skill, type of intervention, and the nature of the fMRI task. (JINS, 2006, 12, 828–842.)

Type
SYMPOSIUM
Copyright
© 2006 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abo, M., Senoo, A., Watanabe, S., Miyano, S., Doseli, K., Sasaki, N., Kobayashi, K., Kikuchi, Y., & Yonemoto, K. (2004). Language-related brain function during word repetition in post-stroke aphasics. Neuroreport, 15, 18911894.CrossRefGoogle Scholar
Belin, P., Van Eeckhout, P., Zilbovicious, M., Remy, P., Francois, C., Guillaume, S., Chain, F., Rancurel, G., & Samson, Y. (1996). Recovery from nonfluent aphasia after melodic intonation therapy: A PET study. Neurology, 47, 15041511.CrossRefGoogle Scholar
Bhogal, S.K., Teasell, R., & Speechley, M. (2003). Intensity of aphasia therapy, impact on recovery. Stroke, 34, 987993.CrossRefGoogle Scholar
Blank, S.C., Bird, H., Turkheimer, F., & Wise, R.J. (2003). Speech production after stroke: The role of the right pars opercularis. Annals of Neurology, 54, 310320.CrossRefGoogle Scholar
Breier, J.I., Castillo, E.M., Boake, C., Billingsley, R., Naher, L., Francisco, G., & Papanicolaou, A.C. (2004). Spatiotemporal patterns of language-specific brain activity in patients with chronic aphasia after stroke using magnetoencephalography. Neuroimage, 23, 13081316.CrossRefGoogle Scholar
Buccino, G., Perelli, D., Cattaneo, L., Pavesi, G., Ioele, M., Michelotti, V., Franceschini, M., & Rizzolatti, G. (2002). Motor observation: A new perspective in neuro-rehabilitation? 11th European Stroke Conference, Geneva, Switzerland.
Buccino, G., Solodkin, A., & Small, S.L. (2006). Functions of the mirror neuron system: Implications for neurorehabilitation. Cognitive and Behavioral Neurology, 19, 5563.CrossRefGoogle Scholar
Buckner, R.L., Corbetta, M., Schatz, J., Raichle, M.E., & Petersen, S.E. (1996). Preserved speech abilities and compensation following prefrontal damage. Proceedings of the National Academy of Science of the United States of America, 93, 12491253.CrossRefGoogle Scholar
Cao, Y., Vikingstad, E.M., George, K.P., Johnson, A.F., & Welch, K.M. (1999). Cortical language activation in stroke patients recovering from aphasia with functional MRI. Stroke, 30, 23312340.CrossRefGoogle Scholar
Cardebat, D., Demonet, J.F., Celsis, P., Puel, M., Viallard, G., & Narc-Vergnes, J.P. (1994). Right temporal compensatory mechanisms in a deep dysphasic patient: A case report with activation study by SPECT. Neuropsychologia, 32, 97103.CrossRefGoogle Scholar
Chen, E.E. & Small, S.L. (2006). Exploring test-retest reliability: Group and task effects. Brain and Language, (in press).Google Scholar
Cherney, L.R. (1995). Efficacy of oral reading in the treatment of two patients with chronic Broca's aphasia. Topics in Stroke Rehabilitation, 2, 5767.CrossRefGoogle Scholar
Cherney, L.R. (2004). Aphasia, alexia and oral reading. Topics in Stroke Rehabilitation, 11, 2236.CrossRefGoogle Scholar
Cherney, L., Merbitz, C., & Grip, J. (1986). Efficacy of oral reading in aphasia treatment outcome. Rehabilitation Literature, 47, 112119.Google Scholar
Cornelissen, K., Laine, M., Tarkianen, A., Jarvensivu, T., Martin, N., & Salmelin, R. (2003). Adult brain plasticity elicited by anomia treatment. Journal of Cognitive Neuroscience, 15, 444461.CrossRefGoogle Scholar
Cox, R.W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers in Biomedical Research, 29, 162173.CrossRefGoogle Scholar
Dale, A.M., Fischl, B., & Sereno, M.I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179194.CrossRefGoogle Scholar
Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., & Killiany, R.J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968980.CrossRefGoogle Scholar
Dronkers, N.F., Redfern, B.B., & Ludy, C.A. (1995). Lesion localization in chronic Wernicke's aphasia. Brain and Language, 51, 6265.Google Scholar
Dronkers, N.F., Wilkins, D.P., Van Valin, R.D., Jr., Redfern, B.B., & Jaeger, J.J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92, 145177.CrossRefGoogle Scholar
Fernandez, B., Cardebat, D., Demonet, J.F., Joseph, P.A., Mazaux, J.-M., Barat, M., & Allard, M. (2004). Functional MRI follow-up study of language processes in healthy subjects and during recovery in a case of aphasia. Stroke, 35, 21712176.CrossRefGoogle Scholar
Fischl, B., Sereno, M.I., & Dale, A.M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9, 195207.CrossRefGoogle Scholar
Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D.H., Busa, E., Seidman, L.J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., & Dale, A.M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 1122.CrossRefGoogle Scholar
Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A., & Noll, D.C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magnetic Resonance in Medicine, 33, 636647.CrossRefGoogle Scholar
Heiss, W.D., Kessler, J., Thiel, A., Ghaemi, M., & Karbe, H. (1999). Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Annals of Neurology, 45, 419420.Google Scholar
Hillis, A.E., Kane, A., Tuffiash, E., Ulatowski, J.A., Barker, P.B., Beauchamp, N.J., & Wityk, R.J. (2001). Reperfusion of specific brain regions by raising blood pressure restores selective language functions in subacute stroke. Brain and Language, 79, 495510.CrossRefGoogle Scholar
Jonides, J., Schumacher, E.H., Smith, E.E., Koeppe, R.A., Awh, E., Reuter-Lorenz, P.A., Marshuetz, C., & Willis, C.R. (1998). The role of parietal cortex in verbal working memory. Journal of Neuroscience, 18, 50265034.CrossRefGoogle Scholar
Karbe, H., Thiel, A., & Weber-Luxenburger, G. (1998a). Brain plasticity in post-stroke aphasia: What is the contribution of the right hemisphere? Brain and Language, 64, 215230.Google Scholar
Karbe, H., Thiel, A., Weber-Luxenburger, G., Kessler, J., Herholz, K., & Heiss, W.D. (1998b). Reorganization of the cerebral cortex in post-stroke aphasia studied with positron emission tomography. Neurology, 50, A321.Google Scholar
Kertesz, A. (1982). Western Aphasia Battery. New York, NY: Harcourt Brace Jovanovich.
Leger, A., Demonet, J.-F., Ruff, S., Aithamon, B., Touyeras, B., Puel, M., Boulanouar, K., & Cardebat, D. (2002). Neural substrates of spoken language rehabilitation in an aphasic patient: An fMRI study. Neuroimage, 17, 174183.CrossRefGoogle Scholar
Metter, E.J. (1991). Brain-behavior relationships in aphasia studied by positron emission tomography. Annals of the New York Academy of Science, 620, 153164.CrossRefGoogle Scholar
Meinzer, M., Djundja, D., Barthel, G., Elbert, T., & Rockstroh, B. (2005). Long-term stability of improved language functions in chronic aphasia after constraint-induced aphasia therapy. Stroke, 36, 14621466.CrossRefGoogle Scholar
Miura, K., Nakamura, Y., Miura, F., Yamada, I., Takahashi, M., Yoshikawa, A., & Misobata, T. (1999). Functional magnetic resonance imaging to word generation task in a patient with Broca's aphasia. Journal of Neurology, 246, 939942.CrossRefGoogle Scholar
Musso, M., Weiller, C., Kiebel, S., Muller, S.P., Bulau, P., & Rijntjes, M. (1999). Training-induced brain plasticity in aphasia. Brain, 122, 17811790.CrossRefGoogle Scholar
Naeser, M.A., Martin, P.I., Baker, E.H., Hodge, S.M., Sczerzenie, S.E., Nicholas, M., Palumbo, C.L., Goodglass, H., Wingfield, A., Samaraweera, R., Harris, G., Baird, A., Renshaw, P., & Yurgelun-Todd, D. (2004). Overt propositional speech in chronic nonfluent aphasia studied with the dynamic susceptibility contrast fMRI method. Neuroimage, 22, 2941.CrossRefGoogle Scholar
Naeser, M., Martin, P.I., Nicholas, M., Baker, E.H., Seekins, H., Kobayashi, M., Theoret, H., Fregni, F., Naria-Tormos, J., Kurland, J., Doron, K.W., & Pascual-Leone, A. (2005). Improved picture naming in chronic aphasia after TMS to part of right Broca's area: An open protocol study. Brain and Language, 93, 95105.CrossRefGoogle Scholar
Nicholas, L.E. & Brookshire, R.H. (1993). A system for quantifying the informativeness and efficiency of connected speech of adults with aphasia. Journal of Speech and Hearing Research, 36, 338350.CrossRefGoogle Scholar
Noll, D.C., Cohen, J.D., Meyer, C.H., & Schneider, W. (1995). Spiral K-Space MRI of cortical activation. Journal of Magnetic Resonance Imaging, 5, 4956.CrossRefGoogle Scholar
Ohyama, M., Senda, M., Kitamura, S., Ishii, K., Mishina, M., & Terashi, A. (1996). Role of the nondominant hemisphere and undamaged area during word repetition in post-stroke aphasia. A PET activation study. Stroke, 27, 897903.Google Scholar
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97113.CrossRefGoogle Scholar
Parrish, T.B., Gitelman, D.R., LaBar, K.S., & Mesulam, M.M. (2000). Impact of signal-to-noise on functional MRI. Magnetic Resonance in Medicine, 44, 925932.3.0.CO;2-M>CrossRefGoogle Scholar
Perani, D., Cappa, S.F., Tettamanti, M., Rosa, M., Scifo, P., Miozzo, A., Basso, A., & Fazio, F. (2003). A fMRI study of word retrieval in aphasia. Brain and Language, 85, 357368.CrossRefGoogle Scholar
Pulvermuller, F., Neininger, B., Elbert, T., Mohr, B., Rockstroh, B., Koebbel, P., & Taub, E. (2001). Constraint-induced therapy of chronic aphasia after stroke. Stroke, 32, 16211626.CrossRefGoogle Scholar
Rosen, H.J., Petersen, S.E., Linenweber, M.R., Snyder, A.Z., White, D.A., Chapman, L., Dromerick, A.W., Fiez, J.A., & Corbetta, M. (2000). Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology, 55, 18831894.CrossRefGoogle Scholar
Small, S.L., Flores, D.K., & Noll, D.C. (1998). Different neural circuits subserve reading before and after therapy for acquired dyslexia. Brain and Language, 62, 298308.CrossRefGoogle Scholar
Thompson, C.K. (2000). Neuroplasticity: Evidence from aphasia. Journal of Communication Disorders, 33, 357366.CrossRefGoogle Scholar
Thulborn, K.R., Carpenter, P.A., & Just, M.A. (1999). Plasticity of language-related brain function during recovery from stroke. Stroke, 30, 749754.CrossRefGoogle Scholar
Warburton, E., Price, C.J., Swinburn, K., & Wisem R.J. (1999). Mechanisms of recovery from aphasia: Evidence from positron emission tomography studies. Journal of Neurology, Neurosurgery, and Psychiatry, 66, 155161.CrossRefGoogle Scholar
Weiller, C., Isensee, C., Rijntjes, M., Huber, W., Muller, S., Bier, D., Dutschka, K., Woods, R.P., Noth, J., & Diener, H.C. (1995). Recovery from Wernicke's aphasia: A positron emission tomographic study. Annals of Neurology, 37, 723732.CrossRefGoogle Scholar
Wier, H.Y., Hasson, U., Skipper, J.I., Raja, A., & Small, S.L. (2006). Virtual brain transplantation: An approach for accurate registration and parcellation of brain-injured patients [Abstract]. Paper presented at the Human Brain Mapping 2006, Florence, Italy.
Xu, X.J., Zhang, M.M., Shang, D.S., Wang, Q.D., Luo, B.Y., & Weng, X.C. (2004). Cortical language activation in aphasia: A functional MRI study. Chinese Medical Journal (English), 117, 10111016.Google Scholar