Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T08:55:15.329Z Has data issue: false hasContentIssue false

Rostral-middle locus coeruleus integrity and subjective cognitive decline in early old age

Published online by Cambridge University Press:  16 December 2022

Tyler Reed Bell*
Affiliation:
Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA 92093, USA Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA 92093, USA
Jeremy A. Elman
Affiliation:
Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA 92093, USA Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA 92093, USA
Asad Beck
Affiliation:
Center for Neurotechnology, University of Washington, Seattle, WA, USA
Christine Fennema-Notestine
Affiliation:
Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA 92093, USA Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA 92093, USA Department of Radiology, University of California San Diego, San Diego, La Jolla, CA 92093, USA
Daniel E. Gustavson
Affiliation:
Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
Donald J. Hagler
Affiliation:
Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA 92093, USA Department of Radiology, University of California San Diego, San Diego, La Jolla, CA 92093, USA
Amy J. Jack
Affiliation:
Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA 92093, USA Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA 92093, USA
Michael J. Lyons
Affiliation:
Department of Psychology, Boston University, Boston, MA 02215, USA
Olivia K. Puckett
Affiliation:
Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA 92093, USA Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA 92093, USA
Rosemary Toomey
Affiliation:
Department of Psychology, Boston University, Boston, MA 02215, USA
Carol E. Franz
Affiliation:
Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA 92093, USA Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA 92093, USA
William S. Kremen
Affiliation:
Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA 92093, USA Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA 92093, USA
*
Corresponding author: Tyler Reed Bell, email: [email protected]

Abstract

Objectives:

Abnormal tau, a hallmark Alzheimer’s disease (AD) pathology, may appear in the locus coeruleus (LC) decades before AD symptom onset. Reports of subjective cognitive decline are also often present prior to formal diagnosis. Yet, the relationship between LC structural integrity and subjective cognitive decline has remained unexplored. Here, we aimed to explore these potential associations.

Methods:

We examined 381 community-dwelling men (mean age = 67.58; SD = 2.62) in the Vietnam Era Twin Study of Aging who underwent LC-sensitive magnetic resonance imaging and completed the Everyday Cognition scale to measure subjective cognitive decline along with their selected informants. Mixed models examined the associations between rostral-middle and caudal LC integrity and subjective cognitive decline after adjusting for depressive symptoms, physical morbidities, and family. Models also adjusted for current objective cognitive performance and objective cognitive decline to explore attenuation.

Results:

For participant ratings, lower rostral-middle LC contrast to noise ratio (LCCNR) was associated with significantly greater subjective decline in memory, executive function, and visuospatial abilities. For informant ratings, lower rostral-middle LCCNR was associated with significantly greater subjective decline in memory only. Associations remained after adjusting for current objective cognition and objective cognitive decline in respective domains.

Conclusions:

Lower rostral-middle LC integrity is associated with greater subjective cognitive decline. Although not explained by objective cognitive performance, such a relationship may explain increased AD risk in people with subjective cognitive decline as the LC is an important neural substrate important for higher order cognitive processing, attention, and arousal and one of the first sites of AD pathology.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Carol E. Franz and William S. Kremen are joint senior authors

References

Alnæs, D., Sneve, M. H., Espeseth, T., Endestad, T., van de Pavert, S. H. P., & Laeng, B. (2014). Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Journal of Vision, 14, 120. https://doi.org/10.1167/14.4.1 CrossRefGoogle ScholarPubMed
Aston-Jones, G., & Bloom, F. E. (1981). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci, 1, 876886. https://doi.org/10.1523/jneurosci.01-08-00876.1981 CrossRefGoogle ScholarPubMed
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu Rev Neurosci, 28, 403450.CrossRefGoogle ScholarPubMed
Bell, T., Hill, N., & Stavrinos, D. (2020). Personality determinants of subjective executive function in older adults. Aging & Mental Health, 24, 19351944.CrossRefGoogle ScholarPubMed
Betts, M. J., Cardenas-Blanco, A., Kanowski, M., Jessen, F., & Duzel, E. (2017). In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. Neuroimage, 163, 150159. https://doi.org/10.1016/j.neuroimage.2017.09.042 CrossRefGoogle ScholarPubMed
Betts, M. J., Kirilina, E., Otaduy, M. C., Ivanov, D., Acosta-Cabronero, J., Callaghan, M. F., … & Hämmerer, D. (2019). Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain, 142(9), 25582571. https://doi.org/10.1093/brain/awz193 CrossRefGoogle ScholarPubMed
Bondi, M. W., Houston, W. S., Eyler, L. T., & Brown, G. G. (2005). fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology, 64, 501508.CrossRefGoogle ScholarPubMed
Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. Journal of Neuropathology & Experimental Neurology, 70(11), 960969. https://doi.org/10.1097/NEN.0b013e318232a379 CrossRefGoogle ScholarPubMed
Buckley, R. F., Hanseeuw, B., Schultz, A. P., Vannini, P., Aghjayan, S. L., Properzi, M. J., ... & Sperling, R. A. (2017). Region-Specific association of subjective cognitive decline with tauopathy independent of global β-amyloid burden. JAMA Neurology, 74(12), 14551463.10.1001/jamaneurol.2017.2216CrossRefGoogle ScholarPubMed
Canevelli, M., Grande, G., Lacorte, E., Quarchioni, E., Cesari, M., Mariani, C., Bruno, G., & Vanacore, N. (2016). Spontaneous reversion of mild cognitive impairment to normal cognition: A systematic review of literature and meta-analysis. Journal of the American Medical Directors Association, 17, 943948. https://doi.org/10.1016/j.jamda.2016.06.020 CrossRefGoogle ScholarPubMed
Caselli, R. J., Chen, K., Locke, D. E., Lee, W., Roontiva, A., Bandy, D., Fleisher, A. S., & Reiman, E. M. (2014). Subjective cognitive decline: Self and informant comparisons. Alzheimer’s & Dementia, 10, 9398. https://doi.org/10.1016/j.jalz.2013.01.003 CrossRefGoogle ScholarPubMed
Chiodo, L. A., Acheson, A. L., Zigmond, M. J., & Stricker, E. M. (1983). Subtotal destruction of central noradrenergic projections increases the firing rate of locus coeruleus cells. Brain Research, 264, 123126.CrossRefGoogle ScholarPubMed
Clewett, D. V., Lee, T. H., Greening, S., Ponzio, A., Margalit, E., & Mather, M. (2016). Neuromelanin marks the spot: Identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiology of Aging, 37, 117126. https://doi.org/10.1016/j.neurobiolaging.2015.09.019 CrossRefGoogle ScholarPubMed
Costa, P. T., & McCrae, R. R. (1992). Normal personality assessment in clinical practice: The NEO Personality Inventory. Psychological Assessment, 4, 5.CrossRefGoogle Scholar
Crumley, J. J., Stetler, C. A., & Horhota, M. (2014). Examining the relationship between subjective and objective memory performance in older adults: A meta-analysis. Psychology and Aging, 29, 250.CrossRefGoogle ScholarPubMed
Csernansky, J. G., Wang, L., Swank, J., Miller, J. P., Gado, M., Mckeel, D., ... & Morris, J. C. (2005). Preclinical detection of Alzheimer’s disease: Hippocampal shape and volume predict dementia onset in the elderly. Neuroimage, 25(3), 783792. https://doi.org/10.1016/j.neuroimage.2004.12.036 CrossRefGoogle ScholarPubMed
Dahl, M. J., Mather, M., Duzel, S., Bodammer, N. C., Lindenberger, U., Kuhn, S., & Werkle-Bergner, M. (2019). Rostral locus coeruleus integrity is associated with better memory performance in older adults. Nat Hum Behav, 3, 12031214. https://doi.org/10.1038/s41562-019-0715-2 CrossRefGoogle ScholarPubMed
Dünnwald, M., Ernst, P., Düzel, E., Tönnies, K., Betts, M. J., & Oeltze-Jafra, S. (2021). Fully automated deep learning-based localization and segmentation of the locus coeruleus in aging and Parkinson’s disease using neuromelanin-sensitive MRI. International Journal of Computer Assisted Radiology and Surgery, 16, 21292135. https://doi.org/10.1007/s11548-021-02528-5 CrossRefGoogle ScholarPubMed
Elman, J. A., Panizzon, M. S., Hagler, D. J. Jr, Eyler, L. T., Granholm, E. L., Fennema-Notestine, C., Lyons, M. J., McEvoy, L. K., Franz, C. E., Dale, A. M., & Kremen, W. S. (2017). Task-evoked pupil dilation and BOLD variance as indicators of locus coeruleus dysfunction. Cortex, 97, 6069. https://doi.org/10.1016/j.cortex.2017.09.025 CrossRefGoogle ScholarPubMed
Elman, J. A., Puckett, O. K., Beck, A., Fennema-Notestine, C., Cross, L. K., Dale, A. M., Eglit, G. M., Eyler, L. T., Gillespie, N. A., Granholm, E. L., Gustavson, D. E., & Kremen, W. S. (2021). MRI-assessed locus coeruleus integrity is heritable and associated with multiple cognitive domains, mild cognitive impairment, and daytime dysfunction. Alzheimers & Dementia, 17, 10171025. https://doi.org/10.1002/alz.12261 CrossRefGoogle ScholarPubMed
Esmaeili, M., Nejati, V., Shati, M., Vatan, R. F., Chehrehnegar, N., & Foroughan, M. (2021). Attentional network changes in subjective cognitive decline. Aging Clinical and Experimental Research, 34, 19.Google ScholarPubMed
Eysenck, H. J. (1983). Psychophysiology and personality: Extraversion, neuroticism and psychoticism. Individual differences and psychopathology. Elsevier. pp. 1330.Google Scholar
Farias, S. T., Mungas, D., Reed, B. R., Cahn-Weiner, D., Jagust, W., Baynes, K., & Decarli, C. (2008). The measurement of everyday cognition (ECog): Scale development and psychometric properties. Neuropsychology, 22, 531544. https://doi.org/10.1037/0894-4105.22.4.531 CrossRefGoogle ScholarPubMed
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., & Dale, A. M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341355. https://doi.org/10.1016/S0896-6273(02)00569-X CrossRefGoogle ScholarPubMed
Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., & Dale, A. M. (2004). Sequence-Independent segmentation of magnetic resonance images. Neuroimage, 23(Suppl 1), S69S84. https://doi.org/10.1016/j.neuroimage.2004.07.016 CrossRefGoogle ScholarPubMed
German, D. C., Manaye, K. F., White, C. L., Woodward, D. J., McIntire, D. D., Smith, W. K., Kalaria, R. N., & Mann, D. M. (1992). Disease-specific patterns of locus coeruleus cell loss. Annals of Neurology, 32(5), 667676. https://doi.org/10.1002/ana.410320510 CrossRefGoogle ScholarPubMed
Granholm, E. L., Panizzon, M. S., Elman, J. A., Jak, A. J., Hauger, R. L., Bondi, M. W., & Kremen, W. S. (2017). Pupillary responses as a biomarker of early risk for Alzheimer’s disease. J Alzheimers Dis, 56, 14191428. https://doi.org/10.3233/JAD-161078 CrossRefGoogle ScholarPubMed
Guinea-Izquierdo, A., Giménez, M., Martínez-Zalacaín, I., Del Cerro, I., Canal-Noguer, P., Blasco, G., Gascón, J., Reñé, R., Rico, I., Aguilera, C., & Camins, A. (2021). Lower locus coeruleus MRI intensity in patients with late-life major depression. PeerJ, 9, e10828.CrossRefGoogle ScholarPubMed
Gustavson, D. E., Reynolds, C. A., Hohman, T. J., Jefferson, A. L., Elman, J. A., Panizzon, M. S., ... & Franz, C. E. (2022). Alzheimer’s disease polygenic scores predict changes in episodic memory and executive function across 12 years in late middle age. Journal of the International Neuropsychological Society, Advance online publication, 1–12.Google ScholarPubMed
Haberstumpf, S., Forster, A., Leinweber, J., Rauskolb, S., Hewig, J., Sendtner, M., Lauer, M., Polak, T., Deckert, J., & Herrmann, M. J. (2022). Measurement invariance testing of longitudinal neuropsychiatric test scores distinguishes pathological from normative cognitive decline and highlights its potential in early detection research. Journal of Neuropsychology, 16, 324352. https://doi.org/10.1111/jnp.12269 CrossRefGoogle ScholarPubMed
Hämmerer, D., Callaghan, M. F., Hopkins, A., Kosciessa, J., Betts, M., Cardenas-Blanco, A., & Dolan, R. J. (2018). Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events. Proceedings of the National Academy of Sciences, 115, 22282233.CrossRefGoogle Scholar
IBM Corp. (2016). IBM SPSS Statistics for Windows, Version 26.0. IBM Corp. Source: https://www-01.ibm Google Scholar
Jacobs, H. I., Becker, J. A., Kwong, K., Engels-Domínguez, N., Prokopiou, P. C., Papp, K. V., Properzi, M., Hampton, O. L., d’Oleire Uquillas, F., Sanchez, J. S., Rentz, D. M., & Sanchez, J. S. (2021). In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer’s disease pathology and cognitive decline. Science Translational Medicine, 13, eabj2511.10.1126/scitranslmed.abj2511CrossRefGoogle Scholar
Jak, A. J., Panizzon, M. S., Spoon, K. M., Fennema-Notestine, C., Franz, C. E., Thompson, W. K., Jacobson, K. C., Xian, H., Eyler, L. T., Vuoksimaa, E., Toomey, R., & Vuoksimaa, E. (2015). Hippocampal atrophy varies by neuropsychologically defined MCI among men in their 50s. The American Journal of Geriatric Psychiatry, 23, 456465.CrossRefGoogle ScholarPubMed
Janitzky, K. (2020). Impaired phasic discharge of locus coeruleus neurons based on persistent high tonic discharge—A new hypothesis with potential implications for neurodegenerative diseases. Frontiers in Neurology, 11, 115. https://doi.org/10.3389/fneur.2020.00371 CrossRefGoogle ScholarPubMed
Jessen, F., Amariglio, R. E., van Boxtel, M., Breteler, M., Ceccaldi, M., Chetelat, G., Dubois, B., Dufouil, C., Ellis, K. A., Van Der Flier, W. M., Glodzik, L., & Subjective Cognitive Decline Initiative Working, G. (2014). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement, 10, 844852. https://doi.org/10.1016/j.jalz.2014.01.001 CrossRefGoogle ScholarPubMed
Jessen, F., Feyen, L., Freymann, K., Tepest, R., Maier, W., Heun, R., Schild, H. H., & Scheef, L. (2006). Volume reduction of the entorhinal cortex in subjective memory impairment. Neurobiology of Aging, 27, 17511756.CrossRefGoogle ScholarPubMed
Jessen, F., Wolfsgruber, S., Kleineindam, L., Spottke, A., Altenstein, S., Bartels, C., Berger, M, Brosseron, F., Daamen, M., Dichgans, M., Dobisch, L., & Düzel, E. (2022). Subjective cognitive decline and stage 2 of Alzheimer disease in patients from memory centers. Alzheimer’s & Dementia, Advance online publication, 111. https://doi.org/10.1002/alz.12674 Google ScholarPubMed
Johansson, B., Björk, M. P., & Thorvaldsson, V. (2020). I rate my memory quite similar at age 40 and at age 70. The Journal of Gerontopsychology and Geriatric Psychiatry, 33, 235244. https://doi.org/10.1024/1662-9647/a000239 Google Scholar
Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89, 221234. https://doi.org/10.1016/j.neuron.2015.11.028 CrossRefGoogle ScholarPubMed
Kremen, W. S., Franz, C. E., & Lyons, M. J. (2013). VETSA: The Vietnam era twin study of aging. Twin Research and Human Genetics, 16(1), 399402. https://doi.org/10.1017/thg.2012.86 CrossRefGoogle ScholarPubMed
Kremen, W. S., Franz, C. E., & Lyons, M. J. (2019). Current status of the Vietnam Era Twin Study of Aging (VETSA). Twin Research and Human Genetics, 22, 783787. https://doi.org/10.1017/thg.2019.125 CrossRefGoogle ScholarPubMed
Kremen, W. S., Panizzon, M. S., Franz, C. E., Spoon, K. M., Vuoksimaa, E., Jacobson, K. C., Vasilopoulos, T., Xian, H., McCaffery, J. M., Rana, B. K., Toomey, R., & Lyons, M. J. (2014). Genetic complexity of episodic memory: A twin approach to studies of aging. Psychology and Aging, 29, 404417. https://doi.org/10.1037/a0035962 CrossRefGoogle ScholarPubMed
Kremen, W. S., Thompson-Brenner, H., Leung, Y. M. J., Grant, M. D., Franz, C. E., Eisen, S. A., ... & Lyons, M. J. (2006). Genes, environment, and time: The Vietnam era twin study of aging (VETSA). Twin Research and Human Genetics, 9(6), 10091022. https://doi.org/10.1375/twin.9.6.1009 CrossRefGoogle ScholarPubMed
Lyons, M. J., Panizzon, M. S., Liu, W., McKenzie, R., Bluestone, N. J., Grant, M. D., Franz, C. E., Vuoksimaa, E. P., Toomey, R., Jacobson, K. C., & Reynolds, C. A. (2017). A longitudinal twin study of general cognitive ability over four decades. Developmental Psychology, 53, 1170.CrossRefGoogle ScholarPubMed
Lyons, M. J., York, T. P., Franz, C. E., Grant, M. D., Eaves, L. J., Jacobson, K. C., Warner Schaie, K. W., Panizzon, M. S., Boake, C., Xian, H., Toomey, R., Eisen, S. A., & Kremen, W. S. (2009). Genes determine stability and the environment determines change in cognitive ability during 35 years of adulthood. Psychological Science, 20, 11461152.10.1111/j.1467-9280.2009.02425.xCrossRefGoogle ScholarPubMed
Matthews, K. A., Xu, W., Gaglioti, A. H., Holt, J. B., Croft, J. B., Mack, D., & McGuire, L. C. (2019). Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015-2060) in adults aged >/=65 years. Alzheimers Dement, 15(1), 1724. https://doi.org/10.1016/j.jalz.2018.0 CrossRefGoogle ScholarPubMed
Merema, M. R., Speelman, C. P., Foster, J. K., & Kaczmarek, E. A. (2013). Neuroticism (not depressive symptoms) predicts memory complaints in some community-dwelling older adults. The American Journal of Geriatric Psychiatry, 21, 729736.CrossRefGoogle ScholarPubMed
Miebach, L., Wolfsgruber, S., Polcher, A., Peters, O., Menne, F., Luther, K., Incesoy, E., Priller, J., Spruth, E., Altenstein, S., & Buerger, K. (2019). Which features of subjective cognitive decline are related to amyloid pathology? Findings from the DELCODE study. Alzheimer’s Research & Therapy, 11(1), 114. https://doi.org/10.1186/s13195-019-0515-y Google ScholarPubMed
Morris, J.C., Roe, C.M., Grant, E.A., Head, D., Storandt, M., Goate, A.M., Fagan, A.M., Holtzman, D.M., & Mintun, M.A. (2009). Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Archives of Neurology, 66(12), 14691475. https://doi.org/10.1001/archneurol.2009.269 CrossRefGoogle ScholarPubMed
Ownby, R. L., Crocco, E., Acevedo, A., John, V., & Loewenstein, D. (2006). Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Archives of General Psychiatry, 63, 530538. https://doi.org/10.1001/archpsyc.63.5.530 CrossRefGoogle ScholarPubMed
Pentz, M. A., & Chou, C. P. (1994). Measurement invariance in longitudinal clinical research assuming change from development and intervention. Journal of Consulting and Clinical Psychology, 62(3), 450462. https://doi.org/10.1037/0022-006X.62.3.450 CrossRefGoogle ScholarPubMed
Petersen, R. C., Roberts, R. O., Knopman, D. S., Geda, Y. E., Cha, R. H., Pankratz, V., Boeve, B. F., Tangalos, E. G., & Rocca, W. (2010). Prevalence of mild cognitive impairment is higher in men: The Mayo Clinic Study of Aging. Neurology, 75, 889897.CrossRefGoogle ScholarPubMed
Priovoulos, N., van Boxel, S. C. J., Jacobs, H. I. L., Poser, B. A., Uludag, K., Verhey, F. R. J., & Ivanov, D. (2020). Unraveling the contributions to the neuromelanin-MRI contrast. Brain Structure & Function, 225, 27572774. https://doi.org/10.1007/s00429-020-02153-z CrossRefGoogle Scholar
Rabin, L. A., Smart, C. M., & Amariglio, R. E. (2017). Subjective cognitive decline in preclinical Alzheimer’s disease. Annual Review of Clinical Psychology, 13, 369396. https://www.annualreviews.org/doi/10.1146/annurev-clinpsy-032816-045136 CrossRefGoogle ScholarPubMed
Rabin, L. A., Smart, C. M., Crane, P. K., Amariglio, R. E., Berman, L. M., Boada, M., Buckley, R. F., Chételat, G., Dubois, B., Ellis, K. A., Gifford, K. A., Jefferson, A. L., Jessen, F., Katz, M. J., Lipton, R. B., Luck, T., Maruff, P., Mielke, M. M., Molinuevo, J. L, … & Sikkes, S. A. M. (2015). Subjective cognitive decline in older adults: an overview of self-report measures used across 19 international research studies. Journal of Alzheimer’s Disease, 48, S63S86.CrossRefGoogle Scholar
Radloff, L. S. (2016). The CES-D Scale. Applied Psychological Measurement, 1, 385401. https://doi.org/10.1177/014662167700100306 CrossRefGoogle Scholar
Ryu, S. Y., Lee, S. B., Kim, T. W., & Lee, T. J. (2016). Memory complaints in subjective cognitive impairment, amnestic mild cognitive impairment and mild Alzheimer’s disease. Acta Neurologica Belgica, 116, 535541. https://doi.org/10.1007/s13760-016-0604-7 CrossRefGoogle ScholarPubMed
Samuels, E. R., & Szabadi, E. (2008). Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol, 6, 235253. https://doi.org/10.2174/157015908785777229 CrossRefGoogle ScholarPubMed
Saykin, A., Wishart, H., Rabin, L., Santulli, R., Flashman, L., West, J., & Mamourian, A. (2006). Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology, 67, 834842.CrossRefGoogle ScholarPubMed
Schoeneborn, C. A., & Heyman, K. M. (2009). Health characteristics of adults aged 55 years and over: United States, 2004-2007. National Health Statistics Reports; no. 16. National Center for Health Statistics. http://www.cdc.gov/nchs/nhis/nhis_nhsr.htm Google Scholar
Smart, C. M., Segalowitz, S. J., Mulligan, B. P., & MacDonald, S. W. (2014). Attention capacity and self-report of subjective cognitive decline: A P3 ERP study. Biological Psychology, 103, 144151. https://doi.org/10.1016/j.biopsycho.2014.08.016 CrossRefGoogle ScholarPubMed
Snitz, B.E., Wang, T., Cloonan, Y.K., Jacobsen, E., Chang, C.C.H., Hughes, T.F., Kamboh, M.I., & Ganguli, M. (2018). Risk of progression from subjective cognitive decline to mild cognitive impairment: The role of study setting. Alzheimer’s & Dementia, 14(6), 734742. https://doi.org/10.1016/j.jalz.2017.12.003 CrossRefGoogle ScholarPubMed
Snitz, B.E., Weissfeld, L.A., Cohen, A.D., Lopez, O.L., Nebes, R.D., Aizenstein, H.J., McDade, E., Price, J.C., Mathis, C.A., & Klunk, W.E. (2015). Subjective cognitive complaints, personality and brain amyloid-beta in cognitively normal older adults. The American Journal of Geriatric Psychiatry, 23(9), 985993. https://doi.org/10.1016/j.jagp.2015.01.008 CrossRefGoogle ScholarPubMed
Terracciano, A., Aschwanden, D., Passamonti, L., Toschi, N., Stephan, Y., Luchetti, M., & Sutin, A. R. (2021). Is neuroticism differentially associated with risk of Alzheimer’s disease, vascular dementia, and frontotemporal dementia? Journal of Psychiatric Research, 138, 3440. https://doi.org/10.1016/j.jpsychires.2021.03.039 CrossRefGoogle ScholarPubMed
Theofilas, P., Ehrenberg, A. J., Dunlop, S., Di Lorenzo Alho, A. T., Nguy, A., Leite, R. E. P., … & Grinberg, L. T. (2017). Locus coeruleus volume and cell population changes during Alzheimer’s disease progression: A stereological study in human postmortem brains with potential implication for early-stage biomarker discovery. Alzheimers Dement, 13(3), 236246. https://doi.org/10.1016/j.jalz.2016.06.2362 CrossRefGoogle ScholarPubMed
Tona, K. D., Keuken, M. C., de Rover, M., Lakke, E., Forstmann, B. U., Nieuwenhuis, S., & van Osch, M. J. (2017). In vivo visualization of the locus coeruleus in humans: quantifying the test–retest reliability. Brain Structure and Function, 222, 42034217. https://doi.org/10.1007/s00429-017-1464-5 CrossRefGoogle ScholarPubMed
Tsuang, M. T., Bar, J. L., Harley, R. M., & Lyons, M. J. (2001). The Harvard Twin Study of Substance Abuse: What we have learned. Harvard Review of Psychiatry, 9, 267279. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11600486 CrossRefGoogle ScholarPubMed
Tu, M.-C., Lo, C.-P., Huang, C.-F., Huang, W.-H., Deng, J. F., & Hsu, Y.-H. (2018). Visual attention performances and related cerebral microstructural integrity among subjects with subjective cognitive decline and mild cognitive impairment. Frontiers in Aging Neuroscience, 10, 268.CrossRefGoogle ScholarPubMed
Tyrell, F. A., Yates, T. M., Widaman, K. F., Reynolds, C. A., & Fabricius, W. V. (2019). Data harmonization: Establishing measurement invariance across different assessments of the same construct across adolescence. Journal of Clinical Child & Adolescent Psychology, 48, 555567. https://doi.org/10.1080/15374416.2019.1622124 CrossRefGoogle ScholarPubMed
van Harten, A. C., Mielke, M. M., Swenson-Dravis, D. M., Hagen, C. E., Edwards, K. K., Roberts, R. O., Geda, Y. E., Knopman, D. S., & Petersen, R. C. (2018). Subjective cognitive decline and risk of MCI: The mayo clinic study of aging. Neurology, 91(4), e300e312. https://doi.org/10.1212/WNL.0000000000005863 CrossRefGoogle ScholarPubMed
Watanabe, T., Tan, Z., Wang, X., Martinez-Hernandez, A., & Frahm, J. (2019) Magnetic resonance imaging of noradrenergic neurons. Brain Struct Funct 224, 16091625 CrossRefGoogle ScholarPubMed
Wilson, R. S., Nag, S., Boyle, P. A., Hizel, L. P., Yu, L., Buchman, A. S., Schneider, J. A., & Bennett, D. A. (2013). Neural reserve, neuronal density in the locus coeruleus, and cognitive decline. Neurology, 80, 12021208. https://doi.org/10.1212/WNL.0b013e3182897103 CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Bell et al. supplementary material

Bell et al. supplementary material

Download Bell et al. supplementary material(PDF)
PDF 312.3 KB