Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T17:40:12.317Z Has data issue: false hasContentIssue false

Relationship of Contextual Cueing and Hippocampal Volume in Amnestic Mild Cognitive Impairment Patients and Cognitively Normal Older Adults

Published online by Cambridge University Press:  20 May 2015

Selam Negash*
Affiliation:
Department of Psychiatry, University of Pennsylvania, Philadelphia Pennsylvania Penn Memory Center, University of Pennsylvania, Philadelphia Pennsylvania
Daria Kliot
Affiliation:
Department of Neurology, University of Pennsylvania, Philadelphia Pennsylvania
Darlene V. Howard
Affiliation:
Georgetown University, Washington, DC
James H. Howard Jr
Affiliation:
Georgetown University, Washington, DC The Catholic University of America, Washington, DC
Sandhistu R. Das
Affiliation:
Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
Paul A. Yushkevich
Affiliation:
Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
John B. Pluta
Affiliation:
Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
Steven E. Arnold
Affiliation:
Department of Psychiatry, University of Pennsylvania, Philadelphia Pennsylvania Penn Memory Center, University of Pennsylvania, Philadelphia Pennsylvania
David A. Wolk
Affiliation:
Penn Memory Center, University of Pennsylvania, Philadelphia Pennsylvania Department of Neurology, University of Pennsylvania, Philadelphia Pennsylvania
*
Correspondence and reprint requests to: Selam Negash, Penn Memory Center, University of Pennsylvania, 3615 Chestnut Street, Philadelphia, PA 19104. E-mail: [email protected]

Abstract

There is currently some debate as to whether hippocampus mediates contextual cueing. In the present study, we examined contextual cueing in patients diagnosed with mild cognitive impairment (MCI) and healthy older adults, with the main goal of investigating the role of hippocampus in this form of learning. Amnestic MCI (aMCI) patients and healthy controls completed the contextual cueing task, in which they were asked to search for a target (a horizontal T) in an array of distractors (rotated L’s). Unbeknownst to them, the spatial arrangement of elements on some displays was repeated thus making the configuration a contextual cue to the location of the target. In contrast, the configuration for novel displays was generated randomly on each trial. The difference in response times between repeated and novel configurations served as a measure of contextual learning. aMCI patients, as a group, were able to learn spatial contextual cues as well as healthy older adults. However, better learning on this task was associated with higher hippocampal volume, particularly in right hemisphere. Furthermore, contextual cueing performance was significantly associated with hippocampal volume, even after controlling for age and MCI status. These findings support the role of the hippocampus in learning of spatial contexts, and also suggest that the contextual cueing paradigm can be useful in detecting neuropathological changes associated with the hippocampus. (JINS, 2015, 21, 285–296)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., & Phelps, C.H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. [Consensus Development Conference, NIH Research Support, Non-U.S. Gov’t]. Alzheimers & Dementia, 7(3), 270279. doi:10.1016/j.jalz.2011.03.008 Google Scholar
Amaral, D., & Lavenex, P. (2007). Hippocampal neuroanatomy. In P. Andersen (Ed.), The hippocampus book (pp. 37129). New York: Oxford University Press.Google Scholar
Artaechevarria, X., Munoz-Barrutia, A., & Ortiz-de-Solorzano, C. (2009). Combination strategies in multi-atlas image segmentation: Application to brain MR data. [Research Support, Non-U.S. Gov’t]. IEEE Transactions on Medical Imaging, 28(8), 12661277. doi:10.1109/TMI.2009.2014372 CrossRefGoogle ScholarPubMed
Avants, B.B., Epstein, C.L., Grossman, M., & Gee, J.C. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. [Research Support, N.I.H., Extramural]. Medical Image Analysis, 12(1), 2641. doi:10.1016/j.media.2007.06.004 CrossRefGoogle ScholarPubMed
Beekly, D.L., Ramos, E.M., Lee, W.W., Deitrich, W.D., Jacka, M.E., Wu, J., & Kukull, W.A. (2007). The National Alzheimer’s Coordinating Center (NACC) database: The Uniform Data Set. Alzheimer Disease and Associated Disorders, 21(3), 249258. doi:10.1097/WAD.0b013e318142774e 00002093-200707000-00009 [pii].Google Scholar
Bennett, I.J., Barnes, K.A., Howard, J.H. Jr., & Howard, D.V. (2009). An abbreviated implicit spatial context learning task that yields greater learning. [Research Support, N.I.H., Extramural]. Behavior Research Methods, 41(2), 391395. doi:10.3758/BRM.41.2.391 Google Scholar
Bobinski, M., DeLeon, M.J., Tarnawski, M., Wegiel, J., Reisberg, B., Miller, D.C., & Wisniewski, H.M. (1998). Neuronal and volume loss in CA1 of the hippocampal formation uniquely predicts duration and severity of Alzheimer’s disease. Brain Research, 805, 267269.Google Scholar
Burgess, N., Maguire, E.A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. [Research Support, Non-U.S. Gov’t Review]. Neuron, 35(4), 625641.Google Scholar
Chen, J., Olsen, R.K., Preston, A.R., Glover, G.H., & Wagner, A.D. (2011). Associative retrieval processes in the human medial temporal lobe: Hippocampal retrieval success and CA1 mismatch detection. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Learning & Memory, 18(8), 523528. doi:10.1101/lm.2135211 Google Scholar
Chun, M.M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 2871.Google Scholar
Chun, M.M., & Phelps, E.A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neuroscience, 2(9), 844847.Google Scholar
Duara, R., Loewenstein, D.A., Potter, E., Appel, J., Greig, M.T., Urs, R., & Potter, H. (2008). Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neurology, 71(24), 19861992. doi:10.1212/01.wnl.0000336925.79704.9f Google Scholar
Eldridge, L.L., Masterman, D., & Knowlton, B.J. (2002). Intact implicit habit learning in Alzheimer’s disease. [Research Support, U.S. Gov’t, Non-P.H.S.]. Behavioral Neuroscience, 116(4), 722726.Google Scholar
Facal, D., Juncos-Rabadan, O., Pereiro, A.X., & Lojo-Seoane, C. (2014). Working memory span in mild cognitive impairment. Influence of processing speed and cognitive reserve. [Research Support, Non-U.S. Gov’t]. International Psychogeriatrics, 26(4), 615625. doi:10.1017/S1041610213002391 Google Scholar
Ferraro, F.R., Balota, D.A., & Connor, L.T. (1993). Implicit memory and the formation of new associations in nondemented Parkinson’s disease individuals and individuals with senile dementia of the Alzheimer type: A serial reaction time (SRT) investigation. Brain and Cognition, 21(2), 163180.Google Scholar
Fleischman, D.A. (2007). Repetition priming in aging and Alzheimer’s disease: An integrative review and future directions. [Research Support, N.I.H., Extramural Review]. Cortex, 43(7), 889897.Google Scholar
Fleischman, D.A., & Gabrieli, J.D. (1998). Repetition priming in normal aging and Alzheimer’s disease: A review of findings and theories. Psychology and Aging, 13(1), 88119.Google Scholar
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.CrossRefGoogle ScholarPubMed
Gabrieli, J.D.E., Stebbins, G.T., Singh, J., Willingham, D.B., & Goetz, C.G. (1997). Intact mirror-tracing and impaired rotary-pursuit skill learning in patients with Huntington’s disease: Evidence for dissociable memory systems in skill learning. Neuropsychology, 11(2), 272281.Google Scholar
Gong, L., Tian, Y., Cheng, H., Chen, Z., Yin, C., Meng, Y., & Wang, K. (2010). Conceptual implicit memory impaired in amnestic mild cognitive impairment patient. [Research Support, Non-U.S. Gov’t]. Neuroscience Letters, 484(2), 153156. doi:10.1016/j.neulet.2010.08.041 Google Scholar
Greene, A.J., Gross, W.L., Elsinger, C.L., & Rao, S.M. (2007). Hippocampal differentiation without recognition: An fMRI analysis of the contextual cueing task. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Learning & Memory, 14(8), 548553. doi:10.1101/lm.609807 Google Scholar
Hammers, A., Allom, R., Koepp, M.J., Free, S.L., Myers, R., Lemieux, L., & Duncan, J.S. (2003). Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. [Research Support, Non-U.S. Gov’t]. Human Brain Mapping, 19(4), 224247. doi:10.1002/hbm.10123 Google Scholar
Heindel, W.C., Salmon, D.P., Shults, C.W., Walicke, P.A., & Butters, N. (1989). Neuropsychological evidence for multiple implicit memory systems: A comparison of Alzheimer’s, Huntington’s, and Parkinson’s disease patients. [Comparative Study Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. Journal of Neuroscience, 9(2), 582587.Google Scholar
Heister, D., Brewer, J.B., Magda, S., Blennow, K., & McEvoy, L.K. (2011). Predicting MCI outcome with clinically available MRI and CSF biomarkers. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Neurology, 77(17), 16191628. doi:10.1212/WNL.0b013e3182343314 Google Scholar
Howard, D.V., & Howard, J.H.J. (2012). Dissociable forms of implicit learning in aging. In M..Naveh-Benjamin & N. Ohta (Eds.), Memory and aging: Current issues and future directions (pp. 125151). New York, NY: Psychology Press.Google Scholar
Howard, J.H. Jr., Howard, D.V., Dennis, N.A., Yankovich, H., & Vaidya, C.J. (2004). Implicit spatial contextual learning in healthy aging. Neuropsychology, 18(1), 124134.Google Scholar
Jack, C.R. Jr., Petersen, R.C., Xu, Y.C., O’Brien, P.C., Smith, G.E., Ivnik, R.J., & Kokmen, E. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Neurology, 52(7), 13971403.Google Scholar
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test. Philadelphia: Lea and Feibiger.Google Scholar
Kessels, R.P., Meulenbroek, O., Fernandez, G., & Olde Rikkert, M.G. (2010). Spatial working memory in aging and mild cognitive impairment: Effects of task load and contextual cueing. [Research Support, Non-U.S. Gov’t]. Neuropsychology, Development, and Cognition. Section B, Aging Neuropsychology and Cognition, 17(5), 556574. doi:10.1080/13825585.2010.481354 CrossRefGoogle ScholarPubMed
Knowlton, B.J., Mangels, J.A., & Squire, L.R. (1996). A neostriatal habit learning system in humans. [Comparative Study Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. Science, 273(5280), 13991402.CrossRefGoogle ScholarPubMed
Korf, E.S., Wahlund, L.O., Visser, P.J., & Scheltens, P. (2004). Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. [Research Support, Non-U.S. Gov’t]. Neurology, 63(1), 94100.Google Scholar
LaVoie, D.J., & Faulkner, K.M. (2008). Production and identification repetition priming in amnestic mild cognitive impairment. [Research Support, Non-U.S. Gov’t]. Neuropsychology, Development, and Cognition. Section B, Aging Neuropsychology and Cognition, 15(4), 523544. doi:10.1080/13825580802051497 Google Scholar
Lee, I., & Solivan, F. (2010). Dentate gyrus is necessary for disambiguating similar object-place representations. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Learning & Memory, 17(5), 252258. doi:10.1101/lm.1678210 Google Scholar
Lieberman, M.D. (2000). Intuition: A social cognitive neuroscience approach. [Review]. Psychological Bulletin, 126(1), 109137.Google Scholar
Lleras, A., & Von Muhlenen, A. (2004). Spatial context and top-down strategies in visual search. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Spatial Vision, 17(4-5), 465482.Google Scholar
Lopez, O.L., Becker, J.T., Jagust, W.J., Fitzpatrick, A., Carlson, M.C., DeKosky, S.T., & Kuller, L.H. (2006). Neuropsychological characteristics of mild cognitive impairment subgroups. [Research Support, N.I.H., Extramural]. Journal of Neurology, Neurosurgery, and Psychiatry, 77(2), 159165. doi:10.1136/jnnp.2004.045567 Google Scholar
Machado, S., Cunha, M., Minc, D., Portella, C.E., Velasques, B., Basile, L.F., & Ribeiro, P. (2009). Alzheimer’s disease and implicit memory. [Review]. Arquivos de Neuro-psiquiatria, 67(2A), 334342.Google Scholar
Manelis, A., & Reder, L.M. (2012). Procedural learning and associative memory mechanisms contribute to contextual cueing: Evidence from fMRI and eye-tracking. [Research Support, N.I.H., Extramural]. Learning & Memory, 19(11), 527534. doi:10.1101/lm.025973.112 Google Scholar
Manns, J.R., & Squire, L.R. (2001). Perceptual learning, awareness and the hippocampus. Hippocampus, 11, 776782.CrossRefGoogle ScholarPubMed
Morris, J.C., Heyman, A., Mohs, R.C., Hughes, J.P., van Belle, G., Fillenbaum, G., & Clark, C. (1989). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39(9), 11591165.Google Scholar
Morris, J.C., Weintraub, S., Chui, H.C., Cummings, J., Decarli, C., Ferris, S., & Kukull, W.A. (2006). The Uniform Data Set (UDS): Clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. Alzheimer Disease and Associated Disorders, 20(4), 210216. doi:10.1097/01.wad.0000213865.09806.92 00002093-200610000-00007 [pii].Google Scholar
Mueller, S.G., Stables, L., Du, A.T., Schuff, N., Truran, D., Cashdollar, N., & Weiner, M.W. (2007). Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. [Comparative Study Research Support, N.I.H., Extramural]. Neurobiology of Aging, 28(5), 719726. doi:10.1016/j.neurobiolaging.2006.03.007 Google Scholar
Negash, S., Petersen, L.E., Geda, Y.E., Knopman, D.S., Boeve, B.F., Smith, G.E., & Petersen, R.C. (2007). Effects of ApoE genotype and mild cognitive impairment on implicit learning. Neurobiology of Aging, 28(6), 885893.Google Scholar
Nemeth, D., Janacsek, K., Kiraly, K., Londe, Z., Nemeth, K., Fazekas, K., & Csanyi, A. (2013). Probabilistic sequence learning in mild cognitive impairment. Frontiers in Human Neuroscience, 7, 318. doi:10.3389/fnhum.2013.00318 Google Scholar
Park, H., Quinlan, J., Thornton, E., & Reder, L.M. (2004). The effect of midazolam on visual search: Implications for understanding amnesia. [Clinical Trial Controlled Clinical Trial Research Support, U.S. Gov’t, P.H.S.]. Proceedings of the Nationall Academy of Science of the United States of America, 101(51), 1787917883. doi:10.1073/pnas.0408075101 Google Scholar
Perri, R., Carlesimo, G.A., Serra, L., & Caltagirone, C. (2005). Characterization of memory profile in subjects with amnestic mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 27(8), 10331055. doi:10.1080/13803390490919317 Google Scholar
Petersen, R.C., & Negash, S. (2008). Mild cognitive impairment: An overview. [Review]. CNS Spectrums, 13(1), 4553.CrossRefGoogle ScholarPubMed
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. [Research Support, U.S. Gov’t, P.H.S.]. Archives of Neurology, 56(3), 303308.Google Scholar
Preston, A.R., & Gabrieli, J.D. (2008). Dissociation between explicit memory and configural memory in the human medial temporal lobe. [Research Support, N.I.H., Extramural]. Cerebral Cortex, 18(9), 21922207. doi:10.1093/cercor/bhm245 Google Scholar
Price, J.L., Ko, A.I., Wade, M.J., Tsou, S.K., McKeel, D.W., & Morris, J.C. (2001). Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. [Research Support, U.S. Gov’t, P.H.S.]. Archives of Neurology, 58(9), 13951402.Google Scholar
Reber, A.S. (1993). Implicit learning and tacit knowledge: An essay on the cognitive unconscious. New York, NY: Oxford University Press.Google Scholar
Reitan, R. (1958). Validity of the trail making test as an indicator of organic brain disease. Perceptual and Motor Skills, 8, 271276.CrossRefGoogle Scholar
Rossler, M., Zarski, R., Bohl, J., & Ohm, T.G. (2002). Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer’s disease. [Research Support, Non-U.S. Gov’t]. Acta Neuropathologica, 103(4), 363369. doi:10.1007/s00401-001-0475-7 Google Scholar
Smith, M.L., & Milner, B. (1981). The role of the right hippocampus in the recall of spatial location. [Research Support, Non-U.S. Gov’t]. Neuropsychologia, 19(6), 781793.Google Scholar
Smyth, A.C., & Shanks, D.R. (2011). Aging and implicit learning: Explorations in contextual cuing. Psychology and Aging, 26(1), 127132. doi:10.1037/a0022014 Google Scholar
Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., & Phelps, C.H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers & Dementia, 7(3), 280292. doi:S1552-5260(11)00099-9 [pii] 10.1016/j.jalz.2011.03.003 Google Scholar
Spreen, O., & Strauss, E. (1998). A compendium of neuropsychological tests: Administration, norms, and commentatory (2nd ed.)., New York: Oxford University Press.Google Scholar
Stillman, C.M., Gordon, E.M., Simon, J.R., Vaidya, C.J., Howard, D.V., & Howard, J.H. Jr. (2013). Caudate resting connectivity predicts implicit probabilistic sequence learning. [Research Support, N.I.H., Extramural]. Brain Connectivity, 3(6), 601610. doi:10.1089/brain.2013.0169 Google Scholar
Tsien, J.Z., Huerta, P.T., & Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87(7), 13271338.Google Scholar
Vaidya, C.J., Huger, M., Howard, D.V., & Howard, J.H. Jr. (2007). Developmental differences in implicit learning of spatial context. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Neuropsychology, 21(4), 497506. doi:10.1037/0894-4105.21.4.497 Google Scholar
van Asselen, M., Almeida, I., Andre, R., Januario, C., Goncalves, A.F., & Castelo-Branco, M. (2009). The role of the basal ganglia in implicit contextual learning: A study of Parkinson’s disease. [Research Support, Non-U.S. Gov’t]. Neuropsychologia, 47(5), 12691273. doi:10.1016/j.neuropsychologia.2009.01.008 CrossRefGoogle ScholarPubMed
van Asselen, M., Almeida, I., Julio, F., Januario, C., Campos, E.B., Simoes, M., & Castelo-Branco, M. (2012). Implicit contextual learning in prodromal and early stage Huntington’s disease patients. [Research Support, Non-U.S. Gov’t]. Journal of the International Neuropsychological Society, 18(4), 689696. doi:10.1017/S1355617712000288 Google Scholar
Wang, H., Das, S.R., Suh, J.W., Altinay, M., Pluta, J., Craige, C., & Yushkevich, P.A. (2011). A learning-based wrapper method to correct systematic errors in automatic image segmentation: Consistently improved performance in hippocampus, cortex and brain segmentation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neuroimage, 55(3), 968985. doi:10.1016/j.neuroimage.2011.01.006 Google Scholar
Wang, H., & Yushkevich, P.A. (2013). Multi-atlas segmentation with joint label fusion and corrective learning-an open source implementation. Frontiers in Neuroinformatics, 7, 27. doi:10.3389/fninf.2013.00027 Google Scholar
Wechsler, D. (1987). WMS-R Wechsler Memory Scale - Revised Manual. New York: The Psychological Corporation, Harcourt Brace Jovanovich, Inc.Google Scholar
Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N.R., Chui, H., & Morris, J.C. (2009). The Alzheimer’s Disease Centers’ Uniform Data Set (UDS): The neuropsychologic test battery. Alzheimer Disease and Associated Disorders, 23(2), 91101. doi:10.1097/WAD.0b013e318191c7dd 00002093-200904000-00001 [pii].Google Scholar
Wenger, M.K., Negash, S., Petersen, R.C., & Petersen, L. (2010). Modeling and estimating recall processing capacity: Sensitivity and diagnostic utility in application to mild cognitive impairment. Journal of Mathmatical Psychology, 54(1), 7389. doi:10.1016/j.jmp.2009.04.012 Google Scholar
West, M.J., Coleman, P.D., Flood, D.G., & Troncoso, J.C. (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Lancet, 344(8925), 769772.Google Scholar
Westerberg, C.E., Miller, B.B., Reber, P.J., Cohen, N.J., & Paller, K.A. (2011). Neural correlates of contextual cueing are modulated by explicit learning. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Neuropsychologia, 49(12), 34393447. doi:10.1016/j.neuropsychologia.2011.08.019 Google Scholar
Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Knopman, D.S., Boeve, B.F., Petersen, R.C., & Jack, C.R. Jr. (2007). 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Brain, 130(Pt 7), 17771786. doi:10.1093/brain/awm112 Google Scholar
Yushkevich, P.A., Pluta, J.B., Wang, H., Xie, L., Ding, S.L., Gertje, E.C., & Wolk, D.A. (2014). Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Human Brain Mapping, doi:10.1002/hbm.22627 Google Scholar