Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T12:40:33.218Z Has data issue: false hasContentIssue false

Prefrontal Cortex Activity during Response Selection Predicts Processing Speed Impairment in Schizophrenia

Published online by Cambridge University Press:  02 July 2013

Neil D. Woodward*
Affiliation:
Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee
Brittney Duffy
Affiliation:
Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee
Haleh Karbasforoushan
Affiliation:
Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee
*
Correspondence and reprint requests to: Neil D. Woodward, Psychiatric Neuroimaging & Psychotic Disorders Programs, Vanderbilt Psychiatric Hospital, Suite 3057, 1601 23rd Ave. S., Nashville, TN 37212 E-mail: [email protected]

Abstract

Processing speed is the most impaired neuropsychological domain in schizophrenia and a robust predictor of functional outcome. Determining the specific cognitive operations underlying processing speed dysfunction and identifying their neural correlates may assist in developing pro-cognitive interventions. Response selection, the process of mapping stimuli onto motor responses, correlates with neuropsychological tests of processing speed and may contribute to processing speed impairment in schizophrenia. This study investigated the relationship between behavioral and neural measures of response selection, and a neuropsychological index of processing speed in schizophrenia. Twenty-six patients with schizophrenia and 21 healthy subjects underwent functional magnetic resonance imaging scanning during performance of two- and four-choice reaction time (RT) tasks and completed the Wechsler Adult Intelligence Scale-III (WAIS) Processing Speed Index (PSI). Response selection, defined as RT slowing between two- and four-choice RT, was impaired in schizophrenia and correlated with psychometric processing speed. Greater activation of the dorsolateral prefrontal cortex (PFC) was observed in schizophrenia and correlated with poorer WAIS PSI scores. Deficient response selection and abnormal recruitment of the dorsolateral PFC during response selection contribute to processing speed impairment in schizophrenia. Interventions that improve response selection and normalize dorsolateral PFC function may improve processing speed in schizophrenia. (JINS, 2013, 19, 1–10)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

August, S.M., Kiwanuka, J.N., McMahon, R.P., Gold, J.M. (2012). The MATRICS Consensus Cognitive Battery (MCCB): Clinical and cognitive correlates. Schizophrenia Research, 134, 7682.CrossRefGoogle ScholarPubMed
Baron, R.M., Kenny, D.A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 11731182.CrossRefGoogle ScholarPubMed
Cannon, T.D., Huttunen, M.O., Lonnqvist, J., Tuulio-Henriksson, A., Pirkola, T., Glahn, D., Koskennvuo, M. (2000). The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. American Journal of Human Genetics, 67, 369382.CrossRefGoogle ScholarPubMed
Chapman, L.J., Chapman, J.P., Curran, T.E., Miller, M.B. (1994). Do children and the elderly show heightened semantic priming? How to answer the question. Developmental Review, 14, 159185.CrossRefGoogle Scholar
Deary, I.J., Liewald, D., Nissan, J. (2011). A free, easy-to-use, computer-based simple and four-choice reaction time programme: The Deary-Liewald reaction time task. Behavioral Research Methods, 43, 258268.CrossRefGoogle ScholarPubMed
Dickinson, D., Ramsey, M.E., Gold, J.M. (2007). Overlooking the obvious: A meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64, 532542.CrossRefGoogle ScholarPubMed
Dux, P.E., Ivanoff, J., Asplund, C.L., Marois, R. (2006). Isolation of a central bottleneck of information processing with time-resolved FMRI. Neuron, 52, 11091120.CrossRefGoogle ScholarPubMed
Dux, P.E., Tombu, M.N., Harrison, S., Rogers, B.P., Tong, F., Marois, R. (2009). Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex. Neuron, 63, 127138.CrossRefGoogle ScholarPubMed
First, M.B., Spitzer, R.L., Gibbon, M., Williams, J.B.W. (1996). Structured Clinical Interview for DSM-IV Axis I Disorders. Clinical Version (SCID-CV). Washington, DC: American Psychiatric Press Inc.Google Scholar
Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A., Noll, D.C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magnetic Resonance in Medicine, 33, 636647.CrossRefGoogle ScholarPubMed
Gardner, D.M., Murphy, A.L., O'Donnell, H., Centorrino, F., Baldessarini, R.J. (2010). International consensus study of antipsychotic dosing. American Journal of Psychiatry, 167, 686693.CrossRefGoogle ScholarPubMed
Glascher, J., Tranel, D., Paul, L.K., Rudrauf, D., Rorden, C., Hornaday, A., Adolphs, R. (2009). Lesion mapping of cognitive abilities linked to intelligence. Neuron, 61, 681691.CrossRefGoogle ScholarPubMed
Jensen, A.R. (2006). Clocking the mind: Mental chronometry and individual differences. Oxford, UK: Elsevier.Google Scholar
Kay, S.R., Fiszbein, A., Opler, L.A. (1987). The postive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13, 261276.CrossRefGoogle Scholar
Krieger, S., Lis, S., Gallhofer, B. (2001). Cognitive subprocesses and schizophrenia. A. Reaction-time decomposition. Acta Psychiatrica Scandinavica Supplement, 1827.CrossRefGoogle ScholarPubMed
Krieger, S., Lis, S., Janik, H., Cetin, T., Gallhofer, B., Meyer-Lindenberg, A. (2005). Executive function and cognitive subprocesses in first-episode, drug-naive schizophrenia: An analysis of N-back performance. American Journal of Psychiatry, 162, 12061208.CrossRefGoogle ScholarPubMed
Lesh, T.A., Niendam, T.A., Minzenberg, M.J., Carter, C.S. (2011). Cognitive control deficits in schizophrenia: Mechanisms and meaning. Neuropsychopharmacology, 36, 316338.CrossRefGoogle ScholarPubMed
Luck, S.J., Kappenman, E.S., Fuller, R.L., Robinson, B., Summerfelt, A., Gold, J.M. (2009). Impaired response selection in schizophrenia: Evidence from the P3 wave and the lateralized readiness potential. Psychophysiology, 46, 776786.CrossRefGoogle ScholarPubMed
Marois, R., Larson, J.M., Chun, M.M., Shima, D. (2006). Response-specific sources of dual-task interference in human pre-motor cortex. Psychological Research, 70, 436447.CrossRefGoogle ScholarPubMed
Minzenberg, M.J., Laird, A.R., Thelen, S., Carter, C.S., Glahn, D.C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66, 811822.CrossRefGoogle ScholarPubMed
Niendam, T.A., Laird, A.R., Ray, K.L., Dean, Y.M., Glahn, D.C., Carter, C.S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive Affectective and Behavioral Neuroscience, 12, 241268.CrossRefGoogle ScholarPubMed
Nuechterlein, K.H., Subotnik, K.L., Green, M.F., Ventura, J., Asarnow, R.F., Gitlin, M.J., Mintz, J. (2011). Neurocognitive predictors of work outcome in recent-onset schizophrenia. Schizophrenia Bulletin, 37(Suppl. 2), S33S40.CrossRefGoogle ScholarPubMed
Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220244.CrossRefGoogle ScholarPubMed
Pellizzer, G., Stephane, M. (2007). Response selection in schizophrenia. Experimental Brain Research, 180, 705714.CrossRefGoogle ScholarPubMed
Poline, J.B., Worsley, K.J., Evans, A.C., Friston, K.J. (1997). Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage, 5, 8396.CrossRefGoogle ScholarPubMed
Purdon, S.E. (2005). The Screen for Cognitive Impairment in Psychiatry (SCIP): Administration manual and normative data. Edmonton, Alberta: PNL Inc.Google Scholar
Rypma, B., Berger, J.S., Prabhakaran, V., Bly, B.M., Kimberg, D.Y., Biswal, B.B., D'Esposito, M. (2006). Neural correlates of cognitive efficiency. Neuroimage, 33, 969979.CrossRefGoogle ScholarPubMed
Sanchez, P., Ojeda, N., Pena, J., Elizagarate, E., Yoller, A.B., Gutierrez, M., Ezcurra, J. (2009). Predictors of longitudinal changes in schizophrenia: The role of processing speed. Journal of Clinical Psychiatry, 70, 888896.CrossRefGoogle ScholarPubMed
Schumacher, E.H., Elston, P.A., D'Esposito, M. (2003). Neural evidence for representation-specific response selection. Journal of Cognitive Neuroscience, 15, 11111121.CrossRefGoogle ScholarPubMed
Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K.L., Toga, A.W. (2008). Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage, 39, 10641080.CrossRefGoogle ScholarPubMed
Simpson, G.M., Angus, J.W.S. (1970). A rating scale for extrapyramidal side effects. Acta Psychiatrica Scandanivica, 212, 1119.CrossRefGoogle ScholarPubMed
Tombu, M.N., Asplund, C.L., Dux, P.E., Godwin, D., Martin, J.W., Marois, R. (2011). A Unified attentional bottleneck in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 108, 1342613431.CrossRefGoogle ScholarPubMed
Vul, E., Harris, C., Winkielman, P., Pashler, H. (2009). Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspectives on Psychological Science, 4, 274290.CrossRefGoogle ScholarPubMed
Wechsler, D. (2001). Wechsler test of adult reading. San Antonio, TX: Pearson.Google Scholar
Woodward, N.D., Waldie, B., Rogers, B., Tibbo, P., Seres, P., Purdon, S.E. (2009). Abnormal prefrontal cortical activity and connectivity during response selection in first episode psychosis, chronic schizophrenia, and unaffected siblings of individuals with schizophrenia. Schizophrenia Research, 109, 182190.CrossRefGoogle ScholarPubMed